\qquad
\qquad
\qquad
\qquad
\qquad

Wั̌ESTERN ZONE J OINT EXAMINATIONS (WEZOJ E) - 2013 The Kenya Certificate of Secondary Education

Instructions to Candidates

1. Write your name, class and admission number in the spaces provided at the top of this page.
2. This paper has two sections: Section I and Section II.
3. Answer all questions in Section I and any five questions in section II.
4. All answers and working must be written on the question paper in the spaces provided below each question.
5. Marks may be awarded for correct working even if the answer is wrong.
6. Non-programmable silent electronic calculators and KNEC Mathematical Tables may be used except where stated otherwise.

FOR EXAMINERS USE ONLY

Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	16	Total

Section II

17	18	19	20	21	22	23	24	Total

1. Use logarithms to evaluate:

$$
\sqrt{\frac{(0.8524)^{3} \times 24.86}{99.28-15.53}}
$$

Solve the equation $2 x^{2}+3 x-7=0$ using completing the square method.
(3marks)
3. The position vectors of points A and B are $\underset{\sim}{e}=-2 \underset{\sim}{i}+\underset{\sim}{j}-8 \underset{\sim}{k}$ and $b=-3 \underset{\sim}{i}+2 \underset{\sim}{j} \underset{\sim}{\sim} 2 k \underset{\sim}{r}$ respectively. Find the magnitude of AB , correct to 4 significant figures.
4. The length and width of a rectangle is stated as 12.40 cm and 8.5 cm respectively.
a) Determine the lower and upper limits θ f each measurement.
b) Calculate the percentage error in the area of the rectangle.
5. a) Write down the expansion of $(2+1 / 4 \mathrm{x})^{4}$
b) Using the first three terms, find the value of $(2.052)^{4}$ correct to 3d.p
6. Make y the subject in

$$
n=\frac{\sqrt{a y^{2}+c^{2}}}{3 y}
$$

10. A house appreciates at a rate of 20% p.a. If it was valued at Ksh. 800,000 in January 2005; Calculate the value in Januaxy 2010.
11. The area of a circle is $99 \mathrm{~m}^{2}$. What is the arc length subtended by an angle 140°. (Take $\pi=3.142$).
(2marks)
12. The angle of elevation of a top of a building from a point A on level ground is 26°. The angle of elevation of the top of a building from another point B nearer the building which is 120 m from A is $50^{\circ} . \mathrm{B}$ is between A and the bottom of the building and the three points are collinear. Find the height of the building.
13. Solve the follwing equation, giving your answer in racians for $0 \leq x \leq 2 \pi^{c}$.

$$
2 \sin 2(x+30)=1
$$

 $\left(\begin{array}{ll}3 & -1 \\ 5 & 2\end{array}\right)$.
(2marks)
15. A plane leaves an airport $\mathrm{X}\left(41.5^{\circ} \mathrm{N}, 36.4^{\circ} \mathrm{W}\right)$ and flies due North to airport Y on latitude $53.2^{\circ} \mathrm{N}$. Calculate the distance covered by the plane in km .
16. Simplify $\frac{\sqrt{7}}{\sqrt{3}-\sqrt{2}}-\frac{\sqrt{7}}{\sqrt{3}+\sqrt{2}}$ leaving your ang $\underbrace{c^{5}} \mathrm{c}^{5}$. in form of $a+b \sqrt{c}$. State the values of a , b and c .

SECTION B. (50 marks)
Answer ANY five questions in this section.
17. The figure below shows two gears of radii 0.7 .n and 0.6 m . A chain which is taut passes round them. What is the length of the chain.
18. The vertices of triangle ABC are $\mathrm{A}(1,1), \mathrm{B}(4,1)$ and $\mathrm{C}(\hat{\mathrm{F}}, 4)$, A transformation represented by a matrix T $\left(\begin{array}{cc}-1 & 0\end{array}\right)$ maps $\triangle \mathrm{ABC}$ onto triangle $A^{\prime} B^{\prime} C$
$\left(\begin{array}{ll}0 & 1\end{array}\right)\left(-e^{e^{\varepsilon^{4}}} 0\right.$
A second transformation represented by
a) On the same axes, draw the three triangles $\mathrm{ABC}, A^{\prime} B^{\prime} C^{\prime}$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.
(7marks)

\#			-																		
		${ }^{\circ}$																			
									,												
	-																				
		-							-		+			$\underline{1}$,			-

b) Describe a single transformation which maps $\triangle \mathrm{ABC}$ on $\mathrm{to} A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ and find its matrix. (3marks)
19. In the triangle OAB below, $\mathrm{OA}=\underset{\sim}{a} \mathrm{OB}=\underset{\sim}{b} . \mathrm{ON} .{ }_{\sim}^{\circ} \mathrm{NB}=1: 3$ and $\mathrm{AM}: \mathrm{MB}=1: 2:$ Line OM and AN meet at T.

a) Express in terms if $\underset{\sim}{a}$ and $\underset{\sim}{b}$ only. The vectors.
$e^{2)^{5}} A \vec{B}$
(1mark)
ii) $\quad A \vec{N}$
(1mark)
iii) $\quad \overrightarrow{\mathrm{OM}}$
(1mark)
b) Given that $\overrightarrow{\mathrm{OT}}=\mathrm{hOM}$ and $\overrightarrow{\mathrm{AT}}=\mathrm{KAN}$ express OT in two different ways and hence, find the values of h and k. (5marks)
c) Show that the points N, T and A are collinear.
20. The table below shows the masses to the nearest kg of all students in a class.

Masses (kg)	No. of students
30-34	5
35-39	$7 s^{\text {e }}$
40-44	8
45-49	${ }^{1} \mathrm{O}$
50-54 ~~	15
$55-59 \mathrm{~S}^{4}$	5

a) Takingthe assumed mean to be 42; calculate

iii) The standard deviation of the distribution.

Draw a cumulative frequency curve and use it to estimate the number of students whose masses lies
between 39.5 kg and 49.5 kg
(4marks)

21. A school has three buses A, B and C. On any day the fortobability of the buses operating are $0.75,0.4$ and 0.5 respectively. Using a tree diagram, find the probagraity that;

a)

ii) Only one bus is operating.
iii) At least one bus is working.
(2marks)
b) A bag contains 5 red cups and 3 white ones. If two cups are picked one at a time, find the probability that a red and a white cup is picked.
i) Without replacement.
ii) With replacement
22. Complete the table below for the functiony $=2 \operatorname{Sin} .1 / 2 x$ and $y=\operatorname{Cos}(2 x-15)^{0}$ in the range90 $0^{0} \leq x \leq 270^{0}$
(2marks)

X	-90	-60	-30	0	30	60	90	120	150	180	210	240	270
$2 \sin 1 / 2 \mathrm{x}$	-1.41	-1.00	-0.52	0.80	0.52			1.73			1.93	1.73	
$\cos (2 \mathrm{x}-15)^{0}$	-0.97			0.97	0.71		-0.97		0.26	0.97			-0.97

a) Using a scale in whight 2 cm represents 30° along x -axis and 1 cm represents 0.2 units along the y-axis, draw the graph of $y=2 \sin 1 / 2 x$ and $y=\cos (2 x-15)$ on the same set of axes. (5 marks)

b) Using the graph drawn in (a) above;
i) State the amplitude and period of the graph

$$
\begin{aligned}
& y=2 \sin ^{1} / 2 x \\
& y=\cos (2 x-152)^{2}
\end{aligned}
$$

ii) ${ }_{x}{ }^{Q}$ Write down the value(s) of x of which $\sin ^{1 / 2} x-1 / 2 \cos (2 x-15)=0$.
23. Water flows through a cylindrical pipe of radius $24^{4^{\circ}} \mathrm{cm}$ at a speed of $25 \mathrm{~m} / \mathrm{min}$
a) Calculate the volume of water delivered by the pipe per minute in litres.
b) A cylindrical storage tank of depth 3 m is filled by water from this pipe and at the same rate of flow. Water begins flowing into the empty storage tank at 9.00 am and is full at 3.40 pm . Calculate area of cross-section of this tank in m^{2}.
(4marks)
c) A family consumes the capacity of this tank in one month, The cost of water is Sh .40 per thousand litres plus a fixed basic charge of Sh. 1650. Calculate the cost of this family's water bill for a month.
24. The diagram below show a rectangular pyramid wifi a horizontal rectangular base and vertex V .

a) ${ }^{c^{5}}$ Calculate the height of the pyramid.
b) Calculate the angle in which $\triangle \mathrm{VQR}$ makes with the base.
c) Calculate the angle made by VR with the base.
d) Calculate $\angle \mathrm{VPQ}$.

