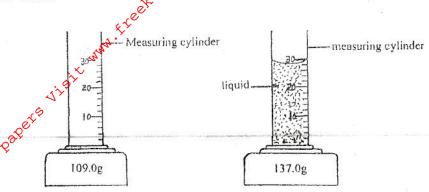
TRIAL EXAMINATION - 2014
PHYSICS PAPER 1

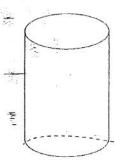
232/1


TIME: 2 HRS

INSTRUCTIONS TO CANDIDATES

- > This paper consists of TWO sections; Section A and B.
- > Answer ALL the questions in both sections in the spaces provided.
- > All working MUST be clearly shown.
- Mathematical tables, Electronic calculators and slide rules may be used.

FOR EXAMINERS' USE ONLY.


Section	Question	Maximum Score	Candidate's Score
A	1 - 12	25	
	13	5	
ž	14	11	
В	15	10	
	16	09	
	17	08	
-	18	12	*
Total	Score	80	

4.

All and a second a	109.0g	137.0g		Wigness and
stee e	Calculate the density of the liquid		án.	(2

ore				
ore				
, o _{te}	Calculate the density of the liquid	on a place surface	are flat Evoluin th	
ot _e	Rain drops are spherical while water droplets statement	on a glass surface	are flat. Explain th	
e ote	statement			(2
e ote	2. Rain drops are spherical while water droplets		are flat. Explain th	(2
ot _e	statement			(2
or _e	statement	1 2		
ote.	statement 3. A body of mass 6kg and density 8000kgm ⁻³ is c	ompletely immers		(: ensity
e .	statement	ompletely immers		

The figure below shows a uniform cylindrical solid. Locate its centre of gravity.

(1mk)

5.	A halloon is filled with hydrogen. It is offerward to size in all out a size in all out a	batala Faulata
	A balloon is filled with hydrogen. It is poserved to rise in air upto a certain it stops to rise	neight. Explair (1
	and the state of t	
	of radius of 1.4cm. of 12mm ³ . One drop of such oil on a water surfac	e forms a
on&	(a) Determine the thickness of the film	(2)
4		
, ve		·····
,	(b) State one assumption made when performing this experiment.	(1
7. A sprii	spring is compressed by 4cm with a force of 20N. Calculate the stored potentiang.	1422
sprii 	ng.	(3mk
sprii 8. A	riffle of mass 4kg fires a bullet of mass 15.0g with a muzzle velocity of 700m/s.	(3mk
sprii 8. A	riffle of mass 4kg fires a bullet of mass 15.0g with a muzzle velocity of 700m/s. the riffle is free to move. Find the recoil velocity of riffle.	(3mk
sprii 8. A	riffle of mass 4kg fires a bullet of mass 15.0g with a muzzle velocity of 700m/s.	(3mk
sprii 8. A	riffle of mass 4kg fires a bullet of mass 15.0g with a muzzle velocity of 700m/s. the riffle is free to move. Find the recoil velocity of riffle.	(3mk
8. A that	riffle of mass 4kg fires a bullet of mass 15.0g with a muzzle velocity of 700m/s. the riffle is free to move. Find the recoil velocity of riffle.	assuming (3m
sprii 8. A that 9.	riffle of mass 4kg fires a bullet of mass 15.0g with a muzzle velocity of 700m/s. the riffle is free to move. Find the recoil velocity of riffle. Calculate the weight of a thread of mass 0.6mg. (Take g = 10N/kg)	assuming (3m
sprii 8. A that 9.	riffle of mass 4kg fires a bullet of mass 15.0g with a muzzle velocity of 700m/s. the riffle is free to move. Find the recoil velocity of riffle. Calculate the weight of a thread of mass 0.6mg. (Take g = 10N/kg)	assuming (3m
sprii 8. A that 9.	riffle of mass 4kg fires a bullet of mass 15.0g with a muzzle velocity of 700m/s. the riffle is free to move. Find the recoil velocity of riffle. Calculate the weight of a thread of mass 0.6mg. (Take g = 10N/kg)	assuming (3m
sprii 8. A that 9.	riffle of mass 4kg fires a bullet of mass 15.0g with a muzzle velocity of 700m/s. the riffle is free to move. Find the recoil velocity of riffle. Calculate the weight of a thread of mass 0.6mg. (Take g = 10N/kg)	assuming (3m
sprii 8. A that 9.	riffle of mass 4kg fires a bullet of mass 15.0g with a muzzle velocity of 700m/s, the riffle is free to move. Find the recoil velocity of riffle. Calculate the weight of a thread of mass 0.6mg. (Take g = 10N/kg)	assuming (3m)
sprii 8. A that 9.	riffle of mass 4kg fires a bullet of mass 15.0g with a muzzle velocity of 700m/s. the riffle is free to move. Find the recoil velocity of riffle. Calculate the weight of a thread of mass 0.6mg. (Take g = 10N/kg)	assuming (3m)
sprii 8. A that 9.	riffle of mass 4kg fires a bullet of mass 15.0g with a muzzle velocity of 700m/s, the riffle is free to move. Find the recoil velocity of riffle. Calculate the weight of a thread of mass 0.6mg. (Take g = 10N/kg)	assuming (3m) (2m) xpress the (2m)

14. (a) The figure below shows a velocity -time graph for the motion of a certain body. V (m/s) Describe the motion of the body in the region: (1mk) (i) OA: (ii) BC: (1mk) (b) A car moving initially at 10m/s decelerates uniformly at 2.5m/s² Determine: (I) its velocity after 1.5 seconds (II) the distance travelled in 1.5 seconds (2mks)

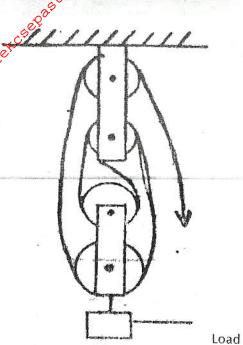
(IV) Sketch the velocity – time graph for the motion of the car up to the time the car stopped. (1mk)

(III) the time taken for the car to stop

(2mks)

(v) From the	graph determine the total distance	/ ce the car travelled I	before stopping.	(2mks)
	e de			

	rd.		•••••••••••••••••••••••••••••••	
15. (a) What	is meant by specific latent heat of	vaporisation?		(1mk)
*********				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(b) In ap es 100°C was pa were obtaine	xperiment to determine the specificsed into water contained in a weed;	fic latent heat of var Ill lagged calorimete	porisation of water, start. The following meas	eam at urements
f _{Cr}	Mass of calorimeter = 50g		54	
	Initial mass of water = 70g			
	Initial temperature of water = 5	5°C		
	Final mass of water + calorimet	ter + condensed stea	am = 123g	
20	Final temperature of mixture =	30°C		2 6
	Specific heat capacity of water	= 4200J Kg ⁻¹ K ⁻¹		
	Specific heat capacity of copper	r = 390 JKg ⁻¹ K ⁻¹		a di
Deter				
(i) Mass o	f condensed steam			/1 moles)
(1) 111033 0	* Condensed Steam	1		(1.mks)
/編 (ii) Heat g	ained by water and calorimeter	•		(3mks)
				(OTTINO)
· · · · · · · · · · · · · · · · · · ·				
				······································
	*hat 1 ia tha ann aisi Tatan 1 ha as			
	that L is the specific latent heat of			
(i) Write d	lown in terms of L an expression fo	or the heat given ou	t by steam.	(1mk)
(ii) Determ	nine the value of L	5		/2ml/s\
(ii) Determ	The trib value of t	37 b		(2mks)
		·····		


Alliance high school

Page 5

temperature o	of the
	(2mks)
	(41)
	(1mk)

NIII NIII NIII NIII NIII NIII NIII NII	
	(4 1)
	(1mk)
ertically upwar	ds in a
34 35.5	
	8
	(2mks)
a /cm³	(2mks)
g/cm	(ZIIIKS)
	y'=: :
to the bottom	of
8	
	×-
4 1	
* a .**	
<u>,1</u>	(2 mks)
Tes	
9	(1mk)
	=
	ertically upwar

.

The diagram below shows a pulley system. If its efficiency is 80% 17.

For more tree tost past papers visit wind. Eree

(2mks)

(ii) The load that can be lifted with an effort of 400N.		(2mks)
(iii) Work done if the load is lifted through a vertical distance of 3.5m	ß	(2mks)
(iv) Average rate of working if the work is done in 1.5 minutes		(2mks)

18.a.) The table below gives the centripetal force F acting on the body in a circle of radius 1m for different speeds V of the body

Force F (N)	0.4	1.6	3.6	6.4	10.0	14.4
Speed V (m/s)	1:0	2.0	3.0	4.0	5.0	6.0
$V^2 (m^2/s^2)$			看			

(i) Complete the table

(1mks)

(ii) Plot a graph of F against V² (5mks) (2mks) (iii) Use the graph to determine the mass of the body. b.) A car is negotiating unbanked circular track. State two factors that will determine the critical (2mks) ispeed of the car. (b) Given that the car above has a mass of 1000kg and the circular path has a radius of 25m. Determine the maximum speed with which the motorist can travel so as not to skid if the frictional_ (2mks) force between the tyres and the road is 6500N. Physics Department.

Alliance high school

Page 8