

Index No.: \qquad
Candidate's Signature: \qquad
Date: \qquad

233/3

CHEMISTRY
Paper 3
PRACTICAI e^{e}
Time: 2 ho@rs 15 Minutes

BUSIA COUNTY JOINT EVALUATION EXAMINATION-2014
 Kenya Certificate of Secondary Education CHEMISTRY

Paper 3

Instructions to Candidates

* Write your name and index number in the spaces provided above.
* \quad Sign and write the date of the examination paper.
* Answer ALL the questions in the spaces provided in the question paper.
* ALL working MUST be clearly shown where necessary.
* Mathematical tables and silent electronic calculators may be used.
* Candidates should check the paper to ascertain that all the pages are printed as indicated and that no questions are missing.

1. You are provided with:-

Solution A, 0.07 M hydrochlonie acid
1 g solid B, Calcium hydroxiae
You are required to defermine the solubility of $\mathrm{Ca}(\mathrm{OH})_{2}$
Procedure:
Transfer $\mathrm{al}^{\alpha^{5}}$ solid B into a $250 \mathrm{~cm}^{3}$ volumetric flask. Measure accurately using a clean measuripg cylinder $50 \mathrm{~cm}^{3}$ of water and transfer this carefully into the volumetric flask. Shake gently and measure a second portion of $40 \mathrm{~cm}^{3}$ water and add this to the resulting solation in the volumetric flask. Filter the solution into a beaker and label this solution D.

Place solution A in the burette, pipette $25.0 \mathrm{~cm}^{3}$ of solution D into a $250 \mathrm{~cm}^{3}$ conical flask and titrate using methyl orange indicator. Record your result in table below and repeat the titration carefully to obtain consistent results.

Table	1	2	3
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of A used $\left(\mathrm{cm}^{3}\right)$			

Calculate:
(a) Volume of solution A used.
(1mk)
\qquad
\qquad
\qquad
\qquad
(b) Number of moles of the solution A reacted.
\qquad
\qquad
\qquad
\qquad
(c) Number of moles of solution D^{2} in the $25 \mathrm{~cm}^{3}$

\qquad
(d) Calculate mole of solution D in the $90 \mathrm{~cm}^{3}$ of the solution D . (1mk) 22^{2}
(e) Calculate the mass of calcium hydroxide that dissolved in $90 \mathrm{~cm}^{3}$ of water. (2 mks)
\qquad
\qquad
\qquad
\qquad
(f) Determine the solubility of calcium hydroxide at the room temperature. (2mks)
\qquad
\qquad
\qquad
\qquad
2. You are provided with:-

- Solution Y contained 0.2 M copper (II) sulphate per litre of solution
- Solid Z

You are required to determine the heat evolved when one mole of solution Y react with solid Z.

Procedure

Measure $40 \mathrm{~cm}^{3}$ of solution y and place it into insulated $50 \mathrm{~cm}^{3}$ plastic beaker, stir the solution with the help of the thermometer and record its temperature after every half minute for $11 / 2$ minutes.

After exactly 2 minutes add all the solid Z provided and continue stirring the mixture while recording the temperature of solution and complete the table below.

Table

Time (min)	1/2	1	1.5	${ }^{2 x^{8}}$	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
$\begin{aligned} & \text { Temp } \\ & 0_{\mathrm{c}} \end{aligned}$			$x^{x^{3}}$	X										

(b) (i) $\mathrm{O}_{\text {g the }}$ graph paper provided. Plot a graph of temperature against time. (4mks)
(ii) $e^{\partial^{2} e^{x y}}$ From your graph, determine the maximum temperature change.
\qquad
(c) Given that density of the solution is $1 \mathrm{~g} / \mathrm{cm}^{3}$, determine the quantity of heat evolved when the $40 \mathrm{~cm}^{3}$ of solution Y is reacted completely with solid Z . Specific heat capacity of solution $=4.2 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$.
\qquad
\qquad
\qquad
\qquad
(d) (i) Given that solid Z is zinc powder. Write an ionic equation of the reaction which occurs
\qquad
\qquad
(ii) Determine the moles of copper (II) ions used up in the reaction.
\qquad
\qquad
\qquad
(iii) Determine the amount of heat that would be evolved of one mole of copper (II) ions were used up.
\qquad
\qquad
\qquad
\qquad
3. You are provided with substance ${ }_{S}$? carry out the test below and record your observations and deductions in the table belof.
(a) Scoop a little of solid K^{5} with a clean metallic spatula and place it at the hottest part of a non-luminius flamés.

(b) Add about $10 \mathrm{~cm}^{3}$ of distilled water to the remaining solid K . divide the resulting mixture into 4 portions.
(i) To the $1^{\text {st }}$ portion add 3 drops of acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

Observation	Deductions	
	$(1 \mathrm{mk})$	

(ii) To the $2^{\text {nd }}$ portion add 3 drops of bromine water and warm.

Observation	Deductions	
	$(1 \mathrm{mk})$	
		$(1 \mathrm{mk})$

(iii) Add 2-3 drops of universiol indicator to the $3^{\text {rd }}$ portion and determine the pH of the

(iv) To the $4^{\text {th }}$ portion add a spatula of sodium carbonate.

Observation	Deductions		
	$(1 \mathrm{mk})$		$(1 \mathrm{mk})$

(c) Dissolve one spatula endful of solid L in about $10 \mathrm{~cm}^{3}$ of distilled water. Divide the solution in 3 portions.
(i) To the $1^{\text {st }}$ portion add $\mathrm{NaOH}_{(\mathrm{aq})}$ dropwise until in excess.

Observation	Deductions		
	$(1 \mathrm{mk})$		$(1 \mathrm{mk})$

(ii) To the $2^{\text {nd }}$ portion add dilute ammonia solution dropwise until in excess.

(iii) To the $3^{\text {rd }}$ portion add 2-3 drops of lead (II) nitrate solution and warm.

Observation	Deductions	
	$(1 \mathrm{mk})$	

