Name:	orto.	. Index No
School:	Acta to the state of the state	Candidate's Sign
Date:	o chex	
	way Ete	
233/1	, and the second se	
233/1		
CHEMISTRY 5		
PAPER 1		
CHEMISTRY PAPER 1 MAY/JUNE 2014 TIME: 2 HOURS		
TIME: 2 HOLKS		

CROSS COUNTRY EXAM 2014

Kenya Certificate of Secondary Education (K.C.S.E.)

Chemistry Paper 1

INSTRUCTIONS TO CANDIDATES:-

- Write you name and index number in the spaces provided above.
- Answer all the questions in the spaces provided.
- Mathematical tables and electronic calculators may be used form calculations.
- All working **MUST** be clearly shown where necessary.

Question	Maximum score	Candidate's score	
1-26	80		

This paper consists of 10 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing

1. The table below gives some properties of gases D and E

GASES	Density	Effect of H ₂ SO _{4(aq)}	Effect of NaOH _(aq)
D	Lighter than air	Reacts to form a salt	dissolves without reacting
E	Heavier than air	Not affected	Not affected

	(a) Describe how one would obtain a sample of gas E from a mixture of gases D and E	(2mks)
	(b) Suggest a possible identity of gas D	(1mk)
çe	Iron roofing sheets are coated with zinc as sacrificial metal;	
	(i) What is meant by the term 'sacrificial'?	(1mk)
	(ii) Give the name given to the process by which iron sheets are coated with zinc.	(1mk)
	(iii) Zinc is higher than iron in reactivity series yet it does not corrode as fast as iron.	• • • • • • • • • • • • • • • • • • • •
	Explain	(1mk)
		• • • • • • • • • • • •

3. The set-up below was used to investigate the properties of hydrogen gas.

(i) Write an equation for the reaction that takes place in the combustion tube.

(1mk)

	Age ^{rto} .	
((ii) Suggest a possible drying agent X . se ²⁰	(½mk)
((iii) What would happen if the hydrogen gas at the end is not burnt?	(1mk)
	A [†] 6 [†]	
	gert [©]	
	The table below shows pH values of solutions A to E Solution A B C D E	
	pH 3 14 7 6 9	
s^	Which solution;	
(;	a) Contains the largest concentration of hydroxyl ions?	(1mk)
((b) Contains the largest concentration of hydrogen ions	(1mk)
((c) is likely to be a solution of sodium chloride	(1mk)
	Potassium is isotopic and has a relative atomic mass (R.A.M) of 39.5, work out the bundance of each isotope. The three isotopes are, ^{39}K , ^{40}K and ^{38}K (0.01%)	percentage (3mks)
		•••••
	An ion of element Q can be represented as ${}^{32}_{16}Q^{2-}$	
	(a) Draw the structure of the ion	(2mks)
	(b) How does its ionic radius compare with its atomic radius	(1mk)

	e ^{zs} .	
	××600	
	The electronic configuration for elements represented by letters A, B, C a	
	B 2.8.2, C 2.8.1, D 2.8.8	and D are 14 2.0.0,
	(a) Select the element which forms;	
	(i) A double charged cation	(1mk)
		,
	(ii) a solikla sombonata	
	(ii) a spluble carbonate	(1mk)
	(b) Which element has the shortest atomic radius	(1mk)
e	When concentrated hydrochloric acid was electrolysed for a longtime. To	
	When concentrated hydrochloric acid was electrolysed for a longtime. Tw	wo gases were
	obtained at the anode;	
	(i) Name the two gases	(1mk)
	(ii) Explain why the gases were obtained.	(2mks)
	Using dots (•) and crosses (X) to represent electrons, draw diagrams to s	show bonding in;
	(a) C_2H_4 (C=12 H=1)	(2mks)
	(b) Hydro-oxonium ion H ₃ O ⁺ (H=1 O=8)	(2mks)
	(-))	, ,
		•••••
		• • • • • • • • • • • • • • • • • • • •

10. A student reacted Silver Nitrate and Barium Chloride solutions to prepare two salts.

(i) Write an equation for the reaction that took place	(1mk)
(ii) Write the ionic equation for the reaction	(1mk)
Jarah	
N ¹ 6 ¹	
(iii) Name the method above use din preparing salts mentioned. (1mk)	
11. eGive the name and formula of; (i) A complex cation containing a transition metal	
11. Consider the name and formula of;	
(i) A complex cation containing a transition metal	(1mk)
(ii) A complex anion containing a transition metal	(1mk)
12. Use the diagram below to answer the questions below:	
Copper (II) oxide	
(II) oxide Gas Y Heat	

(i) Identify gas \mathbf{Y}	(1mk)
(ii) Write an equation for the reaction taking place in the combustion tube.	(1mk)
(iii) Which is the best place for carrying out the above experiment	(1mk)

(a) Identify substance ${\bf K}$

(1mk)

Substance K

$$N_{2(g)} + 3H_{2(g)} = 2NH_{3(g)}\Delta H = -97 KJmol^{-1}$$

(i) Name one source of hydrogen used in the process (1mk)

(ii) Name the catalyst used in the above reaction (1mk)

(ii) What is the effect of increasing temperature on yield of ammonia? Explain

(1mk)

18.	The curves below were obtained when equal volumes of 2M HCl were reacted with	3.0g
	of marble chips (CaCO ₃). In one of the reactions, the acid was warmed before addin	g the
	marble chips.	
	Volume of	
	Volume of gas in cm ³	
	II II	
	₹	
	Time (sec)	
É.		
More	(a) Write the equation for the reaction	(1mk)
&OY		
	(b) Identify the curve representing the reaction where the acid was warmed.	(1mk)
	(c) carried, and carried of resonance where we are was was an arranged	()
		• • • • • • • • • • • • • • • • • • • •
19.	Chlorine gas bubbled into a solution of hydrogen sulphide as shown below:	
	Chlorine	
	gas	
	Boiling	
	tube	
	Hydrogen sulphide solution	
	surpride solution	
	(i) Explain the observation made in boiling tube.	(2mks)
		• • • • • • • • • • • • • • • • • • • •
	(ii) What precautions should be taken in the experiment	(1mk)

21. Study the physical properties of Magnesium and Beryllium. Use it to answer the questions that follow:

Element	Be	Mg
Mp°C	1280	650
Bp °C	2450	1110
Atomic number	4	12
Atomic radius (nm)	0.086	0.136

(a) Explain why l	Be has a higher m	p than Magnesium	(2mks)

				rs. com	
				e ^Y	
			<u>,</u>		
		······ /	e		
		······································			
		```````			
25.	The tal	ble below gives the solub	ilities of Potas	sium Bromine and Po	otassium Sulphate at 0°C
	and at 4	10°С; об			
		Substance	Solubil	ity /100g water	
	ζ.	300	0°C	40°C	
	KC5E	Potassium Bromide	55	75	
24	e	Potassium Sulphate	10	12	
re ,	When	Laqueous mixture containi	ng 60g of KB	and 7g of K ₂ SO ₄ in 1	00g water at 80°C was
,		to 0°C, some crystals we		_	
		ntify the crystals			(1mk)
	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	
	(ii) De	etermine the mass of the c	crystals formed	d	(1mk)
	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	
	(iii) N	ame the method used to o	obtain the crys	tals	(1mk)
	(iv) Su	uggest one industrial appl	lication of the	method named in (iii)	above (1mk)
26.	State two environmental problems likely to be found in an area where Sulphur (IV) of				ere Sulphur (IV) oxide is
	Manuf	actured.			(2mks)
27.	Give t	wo advantages of hard wa	ater		(2mks)

FOR More Free Kesh Past pagers Visit with free Kesh Past pagers of the first pagers of