\qquad
\qquad
School: \qquad
\qquad
Date: \qquad

233/3
CHEMISTRY

PAPER 3

MAY/JUNE 2014
TIME: $21 / 4$ HOURS.

CROSS COUNTRY EXAM 2014

Kenya Certificate of Secondary Education (K.C.S.E.)
Chemistry
Paper 3

INSTRUCTIONS TO CANDIDATES:

- Answer all the questions on the spaces provided.
- All workings must be clearly shown where necessary
- Mathematical tables, and calculators may be used.

For Examiner's Use Only:

Question	Maximum score	Candidate's score
1	24	
2	16	
Total	$\mathbf{4 0}$	

1. You are provided with the following;
(i) 2.1 g of solid sodium carbonate solid $\underset{\mathrm{V}}{ }$.
(ii) Hydrochloric acid solution \mathbf{Y}
(iii) 0.2 M sodium hydroxide, soletion \mathbf{V}

This question has two parts:

PART 1

Measure $60 \mathrm{~cm}^{3}$ of solution $\hat{\widehat{Y}}$ hydrochloric acid and transfer into a plastic beaker and measure its temperature $T_{1}, \ldots \ldots \ldots Q^{e^{s}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . .^{\circ} \mathrm{C}$
Take all the 2.1 g sodium carbonate and transfer into the solution in the beaker. Stir with the thermometer and record final temperature reached, T_{2} \qquad .${ }^{0} \mathrm{C}$

Keep the mixture for part II and label it X.

Calculations

(a) Determine the rise in temperature
$\Delta \mathrm{t}$.
(b) Determine the amount of heat evolved by the solution (density $=1 \mathrm{~g} / \mathrm{cm}^{3}$, specific heat capacity of solution $=4.2 \mathrm{kJKg}^{-1} \mathrm{~K}^{-1}$)
(c) If the acid was in excess, determine the number of moles of sodium carbonate $(\mathrm{Na}=23, \mathrm{O}=16, \mathrm{H}=1)$
(d) Calculate the number of moles of hydrochloric acid which reacts
(e) Determine the molar heat of reaction of sodium carbonate

PART II

To the mixture in part $\mathrm{I}(\mathrm{X})$ add $20 \mathrm{~cm}^{3}$ of distilleg water and mix well. Transfer the solution in the burette. Pipette $25 \mathrm{~cm}^{3}$ of NaOH , solution \mathbf{V}, into thesconical flask and titrate with solution \mathbf{X} using phenolphthalein indicator. Repeat the titration two moredimes and complete the table below:

	S ${ }^{\text {S }}$	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette readinge ${ }^{e}$ (cm^{3})			
Volume of \mathbf{X} used $\left(\mathrm{cm}^{3}\right)$			

(i) Determine the average volume of \mathbf{X} used
(ii) Calculate the number of moles of NaOH in $25 \mathrm{~cm}^{3}$ of solution \mathbf{V}
(iii) Determine the number of moles of hydrochloric acid that reacted with moles of $25 \mathrm{~cm}^{3}$ of sodium hydroxide
(v) What is the total number of moles of hydrochlorie acid in the original $60 \mathrm{~cm}^{3}$ of HCL
(vi) Hence determine the concentration hydrochloric acid, solution \mathbf{Y} in moles per litre
2. You are provided with solid \mathbf{N}. carry out the tests below, write your observations and inferences in the ${ }^{\text {es spaces provided. }}$

$)^{88^{8}} \quad$ Test	Observation	Inferences
(ax) Take a spatula endful of \mathbf{N} in a test-tube and add distilled water until half-filled. Shake well and divide the solution into 5 portions	(1mk)	(1mk)
(b) To the first portion add 2 M NaOH solution drop wise until in excess	(2mks)	(1mk)
(c)To the $2^{\text {nd }}$ portion add $2 \mathrm{M} \mathrm{NH}_{3(a q)}$ drop wise until in excess	(2mks)	(1mk)
(d) To the $3^{\text {rd }}$ portion add 3drops of 2 M HCl solution	(1mk)	(1mk)
(e) To the $4^{\text {th }}$ portion add about $1 \mathrm{~cm}^{3}$ of $2 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution	(1mk)	(2mks)
(f) To the $5^{\text {th }}$ portion add about $1 \mathrm{~cm}^{3}$ of $2 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ solution followed by dilute nitric acid.	(2mks)	(1mk)

