\qquad

DATE

233/3
CHEMISTRY
PAPER 3
(PRACTICAL)
JUNE 2014
2½ HOURS

COMA JOINT EXAM 2014

Kenya Certificate of Secondary Education
CHEMISTRY
PAPER 3
(PRACTICAL)
2½ HOURS

Instructions to candidates.

(a) Write your name and index number and school in the spaces provided.
(b) Sign and write the date of examination in the spaces provided above.
(c) Answer ALL the questions in the spaces provided in the question paper.
(d) You are not allowed to start working with apparatus for the first 15 minutes of the $2 \frac{1}{4}$ hours allowed for this paper. This is to enable you to read the question paper and make sure you have all the chemicals and apparatus that you may need.
(e) All working MUST be clearly shown where necessary.
(f) Mathematical tables and electronic calculators may be used.

For Examiner's Use Only		
Question	Maximum score	Score
1	13	
2	14	
3	13	
Total Score	40	

1. You are provided with:

- Solid A, 2.0 g of dibasic acid, $\mathrm{H}_{2} \mathrm{X}$.
- Solution B, 0.5 M solution of the dibasic acid, $\mathrm{H}_{2} \mathrm{X}$.
- Solution C, sodium hydroxide solution.
- Solution D, 0.02 M acidified potaŚsium manganate (VII) solution.

You are required to determin̂é:
(a) The heat of reaction of solid $\mathrm{A}_{2} \mathrm{X}$ with sodium hydroxide solution.
(b) The number of moles of solution E that reacts with 2 moles of acidified potassium manganate $\left(\frac{\sigma^{\prime}}{} / \mathrm{II}\right)$ solution.

Procedure 1(a) $)^{5}$

Place 40cmi ${ }^{3}$ of distilled water into 100 ml beaker. Measure the initial temperature of water and record dable I below. Add all the solid A provided at once. Stir the mixture carefully with the thermeter until all the solid dissolves. Measure the final temperature and record in table I.

Table I

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	
Initial temperature $\left({ }^{\circ} \mathrm{C}\right)$	

(a) Determine the change in temperature, $\Delta \mathrm{T}$.
\qquad
\qquad
\qquad
\qquad
(b) Calculate the:
(i) heat change when $\mathrm{H}_{2} \mathrm{X}$ dissolves in water. (Assume the heat capacity of the solution is $4.2 \mathrm{~J} / \mathrm{g} /{ }^{\circ} \mathrm{C}$ and density of the solution is $1 \mathrm{~g} / \mathrm{cm}^{3}$).
(ii) the molar heat of solution, $\Delta \mathrm{H}_{1}$ solution of the acid $\mathrm{H}_{2} \mathrm{X}$.
(Molar mass of the acid $\mathrm{H}_{2} \mathrm{X}$ is 126 g).

Procedure 1(b):
Place $40 \mathrm{~cm}^{3}$ of solution B into 100 ml beafer. Measure the initial temperature and record in table II below. Measure $40 \mathrm{~cm}^{3}$ of sodigitm hydroxide, solution C. Add all the $40 \mathrm{~cm}^{3}$ of solution C at once to solution B. Stir the mixdure carefully with the thermometer. Measure the final temperature reached and record initable II. (Keep remaining solution B for use in procedure II).

Table II

Temperature (${ }^{\circ} \mathrm{C}$)	
Initial temperature (${ }^{\circ} \mathrm{C}$)	

(a) Determine the change in temperature, $\Delta \mathrm{T}$.
(b) Calculate the:
(i) heat change for the reaction. (Assume the heat capacity of the solution is $4.2 \mathrm{~J} / \mathrm{g} /{ }^{\circ} \mathrm{C}$ and density of the solution is $1 \mathrm{~g} / \mathrm{cm}^{3}$).
(ii) heat for the reaction of one mole of the acid $\mathrm{H}_{2} \mathrm{X}$ with sodium hydroxide, $\Delta \mathrm{H}_{2}$. (2 marks)
(c) Given that the $\mathrm{H}_{2} \mathrm{X}_{(s)}+2 \mathrm{OH}_{(a q)}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}+A_{(a q)}^{2-}$

Determine $\Delta \mathrm{H}_{3}$ using an energy cycle diagram.
(2 marks)

Procedure II:
Measure exactly $15 \mathrm{~cm}^{3}$ of solution B and pht in a 250 ml volumetric flask. Add water as you shake up to the mark. Labeled as solution E. G^{2} Using a pipette filler, pipette $25 \mathrm{~cm}^{3}$ of solution E and place in a conical flask. Warm solution E_{6} boiling. Fill the burette with solution D and titrate with hot solution E. Stop just when a permănent change in colour. Record your results in the table III below. Repeat the procedure dor complete the table III below.

TABLE III	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution D used $\left(\mathrm{cm}^{3}\right)$			

(a) Cabeulate the average volume of solution D used.
(b) Calculate the number of moles of solution D reacting.
(c) Calculate the number of moles of solution E used.
(d) Calculate the number of moles of E which react with 2 moles of potassium managanate (VII).
2. You are provided with solid X. Carry out the tests below. Record your observations and inferences in the spaces provided.
(a) To about half of soild X, put ingoa clean, dry test tube and heat strongly. Test any fumes produced using the litmus papers provided..

(b) ${ }_{5}^{2}$ Po the remaining solid X put in a clean boiling tube and add about $10 \mathrm{~cm}^{3}$ of distilled water Q^{0} then shake thoroughly, filter the resultant solution. (Keep the filtrate for further tests).

(i) To about $1 \mathrm{~cm}^{3}$ of the filtrate; add 3 drops of phenolphthalein indicator.

Observation	Inferences	
	$(1 / 2$ mark $)$	

(ii) $\mathrm{To} 2 \mathrm{~cm}^{3}$ of the filtrate; add $2 \mathrm{~cm}^{3}$ of 2 M hydrochloric.

Observation	Inferences	
	$(1$ mark $)$	

(iii) To $2 \mathrm{~cm}^{3}$ the filtrate; add sodium hydroxide solution drop wise until in excess.

Observation	Inferences
	$(1 \mathrm{mark})$

(iv) Dip a clean glass rod into the femaining filtrate and put into a non-luminous flame.

Observation ${ }^{\text {a }}$	Inferences
	(1 mark)

3. You are provided with solid Y. Carry out the tests below. Write your observations and inferences in the spaces provided.
(a) Put falf of solid Y in a clean dry metallic spatula. Ignite in a Bunsen burner flame.

(b) Add the remaining half of solid Y into $10 \mathrm{~cm}^{3}$ in a clean boiling tube. Shake well.
(i) To $2 \mathrm{~cm}^{3}$ of solution Y, add 3 drops of universal indicator solution.

Observation	Inferences	
	$(1 \mathrm{mark})$	

(ii) To about $2 \mathrm{~cm}^{3}$ of solution Y, add 3 drops of acidified potassium manganate (VII) solution.

Observation	Inferences	
	$(1 \mathrm{mark})$	

(iii) To about $2 \mathrm{~cm}^{3}$ of solution Y , add 3 drops of bromine water then gently warm.

Observation	Inferences
	$(1$ mark $)$

