SCHOOL
CANDIDATE'S SIGNATURE
121/1
DATE
MATHEMATICS
PAPER 1
JUNE 2014
TIME: $\mathbf{2 ¹ ⁄ 2}_{2}^{2}$ HOURS

COMA JOINT EXAM 2014

Kenya Certificate of Secondary Education MATHEMATICS
 PAPER 1

TLME: $2^{1 ⁄ 2} 2$ HOURS

INSTRUCTIONS TO CANDIDATES:

1. Write your name, index number and school in the spaces provided above.
2. Sign and Write the date of examination in the spaces provided above.
3. This paper consists of two Sections; Section I and Section II.
4. Answer all the questions in Section I and any FIVE questions from Section II.
5. All answers and working must be written on the question paper in the spaces provided below each question.
6. Show all the steps in your calculation, giving your answer at each stage in the spaces provided below each question.
7. Non-programmable silent electronic calculators and KNEC Mathematical tables may be used unless stated otherwise.

FOR EXAMINER'S USE ONLY:

SECTION I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION II

17	18	19	20	21	22	23	24	TOTAL

GRAND TOTAL

SECTION I: (50 MARKS)

Answer ALL questions in this section:

1. Evaluate: $\frac{-12 \div(-3) \times 4-(-20)}{-6 \times 6 \div 3+(-6) c^{5}} e^{0^{s}}$
2. $\hat{v}^{v^{8}} \mathrm{An}$ airbus left Nairobi at 1945 hrs and arrived in London at 0320 hrs . It stayed for $11 / 2 \mathrm{hrs}$ for rest and refreshment of passengers and crew. It then headed for Washington D.C and took $101 / 4 \mathrm{hrs}$.
(a) How long did the journey from Nairobi to London take in hours and minutes?
(2 marks)
(b) At what time did it arrive in Washington D.C.
(2 marks)
3. Evaluate: $\quad \frac{3 / 4+15 / 7 \div 4 / 7 \text { of } 21 / 3}{(13 / 7-5 / 8) \times 2 / 3}$
(3 marks)
4. In the Kapsabet station church choir, the ratio of male to female is $2: 3$. On one Sunday service, 10 male members were absent and six new female members joined the choir as guests for that day. If on this day the ratio of males to females $\alpha \hat{0} \mathrm{a}$ 1:3, how many regular members does the choir have?
5. The figure below represents a roof truss symmetrical about QS. Beam PQ is 5 m long and strut TS is 2.4 m long. The distance TQ is 1.8 m .

Calculate:-
(i) the height QS.
(ii) hence, find the span PR of the roof.
6. An article was bought at Ksh. 2250 then later sold for Ksh.2520. Calculate:-
(i) the percentage profit.
(ii) the price at which it should be sold to make a profit of 20%.
7. In a rectangle $A B C D$, the side $A B$ has equation $3 \chi+2 y=6$ and vertex D has coordinates $(-2,4)$. Find the equation of side AD in the form $\mathrm{a} \chi$ deby $=\mathrm{C}$. Where a, b and C are integers. (3 marks)
8. Inctie figure below $\angle \mathrm{MNO}=54^{\circ}$ and $\angle \mathrm{PLM}=50^{\circ}, \mathrm{PN}=\mathrm{NM}$ and PO is parallel to LM . eFind the value of $\angle \mathrm{LPM}$.

9. Using ruler and pair of compass only, construct triangle ABC in which $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and angle $\mathrm{ABC}=45^{\circ}$. Drop a perpendicular from A to meet BC at M . Measure AM and AC. (3 marks)
10. A plane leaves town P to town Q on a bearing of 130° and a distance of 350 km . it then flies 500 km on a bearing of 060° to town R. Find, 2 by scale drawing the distance between town R and town P.
11. . $^{\iota^{8} e^{\varepsilon}}$ Use tables of reciprocal and squares to evaluate, to 4 significant figures, the expression:

$$
0.4346^{2}+\frac{1}{27.46}
$$

12. The figure below shows a triangle ABC which is right-angled at $\mathrm{C} . \mathrm{CB}=8 \mathrm{~cm}$ and $\mathrm{AC}=6 \mathrm{~cm}$. Find the length of $C D$ given that $C D$ is perpendicular to $A B$.

13. Solve for t in the equation: $\quad 32^{(t-3)} \div 8^{(t-4)}=64 \frac{1}{\xi} 2^{4}$.
14. ${ }^{8} \mathrm{~A}$ is a reflex angle and $\tan \mathrm{A}=7 / 24$. Determine the value of $\operatorname{Cos} \mathrm{A}$ without using the Mathematical table or calculator.
15. Translation T is represented by the column vector $\binom{5}{4}$ and another translation U by the column Vector $\left[\begin{array}{r}-3 \\ 2\end{array}\right]$. A point P is mapped to a point Q by T and point Q is mapped to a point R by U . If point R is at $(7,-4)$, determine the coordinates of point P. (3 marks)
16. On the grid provided, (i) Plot the points $P(4,-1),(5,-3), R(4,-4)$ and $S(3,-3)$ and join the points to form a polygon PQRS. State the name of the polygon formed.
(ii) Write down the equation of the line of symmetry of the polygon.

SECTION II: (50 MARKS)

Answer any FIVE questions in this sectione
17. The capacity of two similar rectangulair tanks are 1,000,000 litres and 512,000 litres respectively.
(a) Determine the length of the Yarger tank if the smaller one is 240 cm long.
(4 marks)
(b) Calculate the surface area of the smaller tank if the larger tank's surface area is $1875 \mathrm{~m}^{2}$.
(3 marks)
(c) Estimate the mass of the smaller tank if the mass of the larger one is 800 kg .
18. The diagram below represents a model of a pillag. The radii of the top and the base are 7 cm and 3.5 cm respectively. The height of the cylindrical part is 10 cm while the height of the whole pillar is 15 cm .
(a) Calculate the volume of the model in cm^{3}.
(b) Calculate the mass of the material used to construct the pillar given that the actual height of the whole pillar is 60 m and the density of the material used is $0.832 \mathrm{~g} / \mathrm{cm}^{3}$. (Give your answer in tones).
(4 marks)
19. (a) Use the quadratic formula to solve the equation.
$2 \chi^{2}-9 \chi+3=0$ giving your answer tge 24 significant figures.
(b) Simplify the expression completely: $\frac{\left(3-5 \chi+2 \chi^{2}\right)(1+\chi)}{16 \chi^{4}-18}$
(c) If the expression $25 \mathrm{y}^{2}-70 \mathrm{y}+(16+\mathrm{K})$ is a perfect square; where K is a constant; find the value of K.
20. Christians who attended a church service on a Synday were grouped by age as shown in the table below.

Age in χ years	$0 \leq x<5$	$5 \leq x<1)^{2}$	$15 \leq x<25$	$25 \leq x<45$	$45 \leq x<75$
No. of members	14	e^{2}	59	70	15

(a) Estimate the mean age
(b) On the grid provided, draw a histogram to represent the distribution.

Use the scale: 1 cm to represent 5 units on the horizontal axis.
2 cm to represent 5 units on the vertical axis.
(c) On the same axes in (b) above, construct a frequency polygon and use it to determine the modal class.
(2 marks)

21. Nairobi and Eldoret are each 250 km from Nakugt. At 8.15a.m, a lorry leaves Nakuru for Nairobi. At 9.30am, a car leaves Eldoret for Nairobi via'Nakuru at a speed of $100 \mathrm{~km} / \mathrm{h}$. Both vehicles arrived Nairobi at the same time.
(a) Calculate their time of arrival indairobi.
(b) Find the cars speed relative to that of the lorry.
(c) How far apart are the vehicles at 12.45 pm .
(4 marks)
22. (a) Complete the table below, for the function $y=-\chi^{2}+2 \chi+6$.

χ	-2	-1	0	$0 e^{2} 1$	2	3	4	5	6
$-\chi^{2}$									
$2 \chi+6$			0^{6}						
y									

(b) On the grid provided, dråiw the graph of the function $y=-\chi^{2}+2 \chi+6$ for the range $-2 \leq x \leq 6$ and use your graph estimate the roots of the equation $-\chi^{2}+2 \chi+6=0$ to 1 decimal place.
(c) To solve graphically the equation $\chi^{2}+2 \chi_{5}=0$; a straight line must be drawn to intersect the curve $y=-\chi^{2}+2 \chi+6$. Determine, the equation of this straight line; draw the straight line on the same axes and hence obtain the roots of the equation $\chi^{2}+2 \chi=0$ to 1 decimal place.
23. In the figure below, PQRSTU is a regular hexagon.

(6) a reflection that maps $\triangle \mathrm{SCR}$ onto $\triangle \mathrm{STC}$.
(ii) an enlargement that maps $\triangle \mathrm{SCR}$ on $\triangle \mathrm{PCU}$.
(2 marks)
(iii) a rotation that maps $\triangle \mathrm{SCR}$ to $\triangle \mathrm{TCU}$.
(b) The $\triangle \mathrm{PQC}$ is reflected on the line RU . The image of $\triangle \mathrm{PQC}$ under the reflection is then rotated through an angle -120° about point C . Determine the images of P and Q :
(i) under the reflection.
(ii) after the two successive transformations.
24. The figure below shows a wedge in which PQR_{8} and UXY are congruent right angled triangles. $P Q=8 \mathrm{~cm}, Q R=5 \mathrm{~cm}$ and $\mathrm{RY}=12 \mathrm{~cm}$.

$Q^{\left(\sin ^{x}\right)}$ the length of RU.
(2 marks)
(ii) the angle the line RU makes with the plane PQVU.
(b) Find the angle between:-
(i) line PY and the plane QRYV.
(ii) the planes PQVU and PRYU.

