NAME:
 .CLASS:.......ADM NO: \qquad

\qquad

232/1
PHYSICS
PAPER 1
JUNE 2014

COMA JOINT EXAM 2014

Kenya Certificate of Education
 Physics Paper 1

Instructions to candidates

- This paper consists of two sections A and B.
- Answer all the questions in the two sections in the spaces provided after each question
- All working must be clearly shown.
- Electronic calculators, mathematical tables may be used.
- All numerical answers should be expressed in the decimal notations.

SECTION	QUESTION	MAX MARKS	CANDIDATE'S SCORE
I	$\mathbf{1 - 1 2}$	25	
II	12	11	
	13	12	
	14	11	
	15	09	
TOTAL	16	12	
		80	

1. A spherical ball bearing of mass 9.0024 kg is held between the anvil and spindle of a micrometer screw gauge. The reading on the gauge when the jaws are closed without anything in between is 0.11 mm . Use this information and the position of the scale in the figure below to answer the questions (a) and (b) betồw:

a) What is the diameter of the ball bearing?
\qquad
b) Find the density of the ball bearing correct to 3 significant figures
\qquad
\qquad
\qquad
\qquad
2. The diagram below shows a wire loop with two threads tied across it. The loop is dipped into a soap solution such that the soap film covers it as shown.

Region B is punctured such that the soap film in that section is broken. On the space alongside the diagram sketch the resulting shape of the wire loop. Give a reason for the shape.
\qquad
3. The figure below shows an arraingement to demonstrate diffusion through solids:-

The hydrogen gas is supplied for sometimes then stopped and the beaker removed. State and explain what is likely to be observed when the hydrogen gas supply is stopped (3 mks)
\qquad
\qquad
\qquad
\qquad
4. Figure 2 shows two identical thermometers. Thermometer \mathbf{A} has a blackened bulb while thermometer \mathbf{B} has a silvery bulb. A candle is placed equidistant between the two thermometers

State with a reason the observations made after some time (2 mk)
\qquad
\qquad
\qquad
5. Explain why it is dangerous for a bus to carry standing passengers.
\qquad
\qquad
6. A uniform metre rule is balaned at its centre. It is balanced by the $30 \mathrm{~N}, 5 \mathrm{~N}$ and the magnetic force between \mathbf{P} and $\mathbf{Q}_{2} \mathbb{P}^{2}$ is fixed and \mathbf{Q} has a weight of 5 N

a) Ignoring the weight of the metre rule, calculate the value of the magnetic force between Q and $P(2 \mathrm{mks})$
b) Given that the lower end of Q is North pole, state polarity of the end of P facing Q .
7. (a) Give a reason why water is not suitable as a barometric liquid. (1 mk)
\qquad
\qquad
(b)Explain why a lift pump is unable to raise water from a borehole where the level of water is 20 m below the ground level.
\qquad
\qquad
8. The diagram below shows and 12 g hanged on a set 6 identical springs. When a mass of 12 g was hanged on spring A alone, its extension was 5 cm . Find the extension of the combination shown if each spring and each rod has negligible mass (2 mks)

9. Sea water of density $\mathbf{1 . 0 4 g} / \mathbf{c m}^{\mathbf{3}}$ is being pumped into a tank through a pipe of uniform cross-sectional area of $3.142 \mathrm{~cm}^{2}$. If the speed of water in the pipe is $5 \mathrm{~m} / \mathrm{s}$, determine the mass flux in S.I unit.
(2 mks)
\qquad
\qquad
\qquad
\qquad
10. Below shows a displacement - time graph.

Describe the motion of the body between points:
OA
(1 mk)
AB (1 mk)
11. A quantity of air occupied $500 \mathrm{~cm}^{3}$ at $15^{\circ} \mathrm{C}$ when the pressure was 76 cmHg . At what temperature would it occtipy $460 \mathrm{~cm}^{3}$ if the pressure was 85 cmHg ?

12 a) (i) Define velocity ration of a machine.
(1 mk)
\qquad
\qquad
(ii) Draw a labeled diagram of a pulley system with a velocity ratio of 5 .
(iii) Suggest any two possible reasons why the efficiency does not reach the 100% mark. (2 mks)
\qquad
\qquad
\qquad
(b) The effort piston of a hydraulic machine is of radius 2.8 cm , while that of the load piston is of radius 14 cm . The machine raises a load of 120 kg at a constant velocity through 2.5 m . If the machine has an efficiency of 80%, find:-
(i) the velocity ratio of the hydraulic machine.
(2 mk)
\qquad
\qquad
\qquad
(ii) The mechanical adeiontage of the hydraulic machine.
(2 mks)

(iii) The effort needễ̉ to raise the load. (2 mks)

188. (a) An object is released to fall vertically from height of 100 m . At the same time another object is projected vertically upward with velocity of $40 \mathrm{~m} / \mathrm{s}$.
(i) Calculate the time taken before the objects meet
(3mks)
(ii) At what height do the objects meet?
\qquad
\qquad
(b) A string of negligible mass has a bucket tied at the end. The string is 60 cm long and the bucket has a mass of 45 g . The bucket is swung horizontally making 6 revolutions per second. Calculate
(i) The angular velocity
(2mk)
\qquad
\qquad
\qquad
(ii) The angular acceleration
\qquad
\qquad
\qquad
(iii) The tension on the string
\qquad
\qquad
\qquad
(iv) The linear velocity
, \qquad
\qquad
14. a) State Archímedes' principle.
(1mk)

(b) The figure below shows a rectangular buoy of mass 4000 kg tethered to the seabed by a wire. The dimensions are $4 \mathrm{~m} \times 1.5 \mathrm{~m} \times 2.2 \mathrm{~m}$.

Calculate the :-
(i) Weight of sea water displaced by the buoy (density of sea water $=1100 \mathrm{~kg} / \mathrm{m}^{3}$)
(ii) Upward force exerted on the buoy by the water.
(iii) Tension in the wire (2mks)
\qquad
(c) A test tube of mass 10 g and uniform cross-sectional area $4 \mathrm{~cm}^{2}$ is partly filled with lead shots and floats vertically in water with 5 cm of its length submerged.
beaker

Find the:-

(ii) $e^{2} e^{2}$ Length of the test tube that would be submerged in a liquid of density $0.75 \mathrm{~g} / \mathrm{cm}^{3}$.

\qquad
\qquad
(b) 1200 g of a liquid at $10^{\circ} \mathrm{C}$ is poured into a well-logged calorimeter. An electric heater rated 1 KW is used to heat the liquid. The graph in fig 4 below shows the variation of temperature of the liquid with time.

Use the graph to answer the following questions:

(ii) How heat is given out by the heater to take the liquid to the boiling pốnt? (2 mks)
(iii) Determine the specific heat capacity of the liquid stating any assumptions made.
(iv) If 50 g of the liquid vapour was collected by the end of the $8^{\text {th }}$ minute, determine the specific latent heat of vaporization of the liquid.
\qquad
\qquad
\qquad
\qquad
16. (a) (i)State Newton's second law of motion.
(1 mk)
\qquad
\qquad
\qquad
(ii) A striker kicks a ball of mass 250 g initially at rest with a force of 75 N . if the foot was in contact with the ball for 0.10 sec . Calculate the take off velocity of the ball.
(2 mks)
\qquad
\qquad
\qquad
\qquad
(b)A bullet of mass $20 \mathrm{~g} \mathrm{mozing} \mathrm{at} 400 \mathrm{~m} / \mathrm{s}$ strikes a block of wood of mass 3.5 kg initially at rest. The bifflet sticks into the block and the two move off together on a horizontal surface where a frictional retarting force of 4 N is acting between the block and surface.
(i) Determifire the initial common velocity of bullet and wooden block. $(2 \mathrm{mks})$

(19i) What distance does the block move before coming to rest?
(3 mks)
(c) Two immiscible liquids are poured in an open container to the levels shown in the diagram below.

Figure 5

If the densities of the liquids \mathbf{A} and \mathbf{B} are $1 \mathrm{~g} / \mathrm{cm}^{3}$ and $0.8 \mathrm{~g} / \mathrm{cm}^{3}$ respectively and the atmospheric pressure 760 mmHg , find the total pressure acting upon solid \mathbf{C} at the bottom of the container. (Take density of mercury to be $13.6 \mathrm{~g} / \mathrm{cm}^{3}$ and $\left.\mathrm{g}=10 \mathrm{~N} / \mathrm{Kg}\right)(3 \mathrm{mks})$
\qquad
\qquad
\qquad
\qquad

