\qquad
\qquad ADM. NO. \qquad

232/3

PHYSICS

PRACTICAL

TIME: 2HRS 30 MINUTES

IASTRUCTIONS

- Write you name, index number, admission number and your class.
- Use the first $\mathbf{1 5}$ minutes of $\mathbf{2 1 / 2} \mathbf{~ h r s ~ t o ~ s t u d y ~ t h e ~ q u e s t i o n s ~ p r o p e r l y . ~}$
- answer all questions

FOR EXAMINERS USE ONLY

QUESTION	MAX. SCORE	CAND. SCORE
$\mathbf{1}$	$\mathbf{2 0}$	
2	$\mathbf{2 0}$	
	$\mathbf{4 0}$	

QUESTION ONE

You are provided with the following;
-A 400ml glass beaker

- A Bunsen burner
- A thermometer
- A stop watch
- A tripod stand and a meastríng cylinder 100 ml
- A wire gauze
- A source of heat.

Set up the apparatus as shown in the diagram below.

Measure $100 \mathrm{~cm}^{3}$ of water and pour it into the beaker. Take the initial temperature of the water.
To.
Now heat the water to a temperature of $90{ }^{\circ} \mathrm{C}$. Switch off the gas tap and place a thermometer into the beaker and start the stop watch when the temperature is $65^{\circ} \mathrm{C}$. Take the temperature $\mathrm{T}^{0} \mathrm{C}$ of water every two minutes. Record your results in the table below.

Time (t) (min)	2	4	6	8	10	12	14
Temperature $(\mathrm{T})^{\circ} \mathrm{C}$							
$\left(\mathrm{T}-\mathrm{T}_{0}\right)^{0}$							
Log $\left(\mathrm{T}-\mathrm{T}_{0}\right)$							

(i) Plot a graph of $\log \left(\mathrm{T}-\mathrm{T}_{\mathrm{O}}\right)$ against Time (t$)$.

(ii) Find the value K of $\log \left(\mathrm{T}-\mathrm{T}_{\mathrm{O}}\right)$ when $\mathrm{t}=0$
\qquad
\qquad
\qquad
(iii)Calculate the $\mathcal{C e m p e r a t u r e ~ o f ~ t h e ~ t h e ~}^{2} \mathrm{~T}_{\mathrm{R}}$ using the expression Antilog $K=65-T_{R}$.

QUESTION TWO

This question has two parts A and B. answer both parts.
PART A
You are provided with the following:

- A meter rule
- Two identical 100 g masses
- About 200 ml of liquid L in 250 ml beaker
- Three pieces of thread, each about half metre long.
- Stand with clamps
- Tissue paper.

Proceed as follows:
(a) Using a stand and one piece of thread, suspend the metre rule in air such that it balances horizontally. Record the position of the centre of gravity. G.

$$
\mathrm{G}=\ldots \mathrm{mm}
$$

NOTE: The metre rule should remain suspended at this point through out the experiment.
(b) Set up the apparatus as in figure 2 below.

Susperd the mass A at a distance $\mathrm{x}=50 \mathrm{~mm}$. adjust the position of mass B until it balances mass A inofnersed in liquid L.

Record the distance d, of mass B from the pivot.
Repeat the same process for other values of x in table 2 below and complete the table.

$x(\mathrm{~mm})$	50	100	150	200	250	300
$\mathrm{~d}(\mathrm{~cm})$						

(c) Plot a graph of d (y axis) against x . $\partial^{e e^{e^{c}}}$

$\square \square \square$

\square	-	,	\square	!	\square	\square	,	-	!	\square	-	,	-	!	\square	-			\square	-	,	-	-	!	-					,				-
				!					+					!					!			-		-	-					!				
				!					+										;															

A
(d) Determine the slope, S of the graph.
\qquad
\qquad
\qquad
\qquad
 of A, find:-
(i) The value of F .

(ii) The upthrust, U
\qquad
\qquad
\qquad

PART B

You are provided with the following:

- A concave mirror with holder
- A screen
- A meter rule
- A candle
- A match box (to be shared)

Proceed as follow:
(f) Set up the apparatus as in figure 3 below.

(g) Put the oblect at a distance $u=30 \mathrm{~cm}$ from the mirror. Adjust the position of the screen until a sharp image is formed on the screen. Record the distance V.
(h) Repeat procedure (b) above for the distance $u e^{-\varepsilon^{5}} 40 \mathrm{~cm}$ and record the new distance V. complete the table 3 below.

U(cm)	V (cm)	x $x^{20 y}$	(m+1)
30			
40			

(i) Given $f=\frac{V f^{5}}{\left(m^{2}-1\right)}$, calculate the values of f hence determine the average value f_{av} :

End

