	COT
NAME	INDEX NO
STREAM	ADM. NO
×	c ^{ee}
232/3	
PHYSICS	
PRACTICAL	
TIME: 2HRS 30 MINUTES	
ers	

COMA JOINT EXAM 2014 ²⁰KENYA CERTIFICATE OF SECONDARY EXAMINATIONS

INSTRUCTIONS

- Write you name, index number, admission number and your class.
- Use the first 15 minutes of 21/2 hrs to study the questions properly.
- answer all questions

FOR EXAMINERS USE ONLY

QUESTION	MAX. SCORE	CAND. SCORE
1	20	
2	20	
	40	

QUESTION ONE

Set up the apparatus as shown in the diagram below.

Measure 100cm³ of water and pour it into the beaker. Take the initial temperature of the water.

Τ₀..... (1mk). Now heat the water to a temperature of 90 $^{\circ}$ C. Switch off the gas tap and place a thermometer into the beaker

and start the stop watch when the temperature is 65 $^{\circ}$ C. Take the temperature T $^{\circ}$ C of water every two minutes. Record your results in the table below.

Time (t)	2	4	6	8	10	12	14
(min)							
Temperature							
(T) ^O C							
$(T - T_0)^0$							
$Log(T-T_0)$							

(7mks)

(i) Plot a graph of Log $(T - T_0)$ against Time (t).

(5mks)

ers. com	
en la construction de la constru	
ce ²⁰	
Determine the antilog of K. $F_{F} = e^{F_{F}^{C}}$	(2mks)
water	
, a ^{j t}	
(iii)Coloulate the encountry of the concurrence T_{i} using the expression	
Antilog $K = 65 - T_R$.	(3mks)

\$*

QUESTION TWO

This question has two parts A and B. answer both parts.

PART A

FOT NOTE

You are provided with the following:

- A meter rule
- Two identical 100g masses
- About 200ml of liquid L in 250ml beaker
- Three pieces of thread, each about half metre long.
- Stand with clamps
- Tissue paper.

Proceed as follows:

(a) Using a stand and one piece of thread, suspend the metre rule in air such that it balances horizontally.

Record the position of the centre of gravity. G.

G = _____ mm

NOTE: The metre rule should remain suspended at this point through out the experiment.

(b) Set up the apparatus as in figure 2 below.

Suspend the mass A at a distance x = 50mm. adjust the position of mass B until it balances mass A increased in liquid L.

 $e^{\int_{-\infty}^{\infty} e^{i\theta}}$ Record the distance d, of mass B from the pivot.

for nore

Repeat the same process for other values of x in table 2 below and complete the table.

x(mm)	50	100	150	200	250	300
d(cm)						

(3 mks)

	COL	
	(d) Determine the slope, S of the graph.	(2mks)
	gep at	
	eeve	
	(e) Given $S = \frac{F}{W}$, where F is the apparent weight of object A in the lie	quid L and W is the actual weight
	of A, find:-	
	(i) The value of F.	(2mks)
ore are	(ii) The upthrust, U	(3mks)
NOT M		
\$		

PART B

You are provided with the following:

- A concave mirror with holder
- A screen
- A meter rule
- A candle
- A match box (to be shared)

Proceed as follow:

(f) Set up the apparatus as in figure 3 below.

(g) Put the oblect at a distance u = 30cm from the mirror. Adjust the position of the screen until a sharp image is formed on the screen. Record the distance V.

(h) Repeat procedure (b) above for the distance y = 40 cm and record the new distance V. complete the table 3 below.

com

U(cm)	V(cm)	M= /u	(m+1)		
30		site .			
40	il.	ly.			
	1757				(2mks)
(i) Given $f = -\frac{1}{6}$	$\frac{V}{(m+1)}$, calculate	e the values of f hen	ce determine the ave	erage value f _{av} :	(3mks)
×	¥.				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*				
	¥ 				
	¥ 				·····
ree.	¥	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·

. . . . .

. . . . .

. . . . .

. . . . .