NAME	age ^{dy} .	INDEX NO
	√ O [±]	.DATE
	.0,5	
SCHOOL	,	

233/1

CHEMISTRY

PAPER 1

THEORY

MAY/JUNE 2014

TIME: 2×HOURS

ACSE.

CHAMPION JOINT EVALUATION TEST.

Kenya Certificate of Secondary Education (K.C.S.E)

233/1

CHEMISTRY

PAPER 1

THEORY

MAY/JUNE 2014

TIME: 2 HOURS

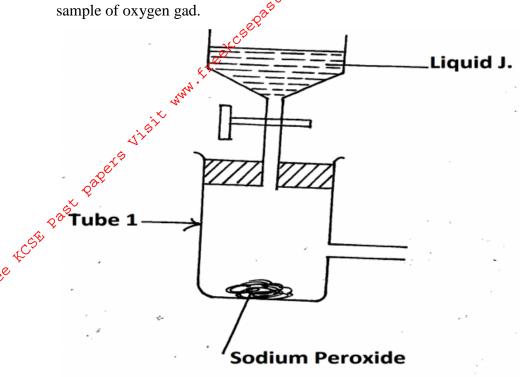
INSTRUCTIONS TO CANDIDATES.

- a) Write your name and index number in the spaces provided above.
- b) Sign and write the date of examination in the spaces provided above.
- c) Answer **ALL** questions in the spaces provided above.
- d) All workings **MUST** be clearly shown where necessary.
- e) Mathematical tables and silent electronic calculators may be used.

FOR EXAMINERS' USE ONLY.

Question	Maximum Score	Candidates' Score
1 - 29	80	

This paper consists of 12 printed pages.

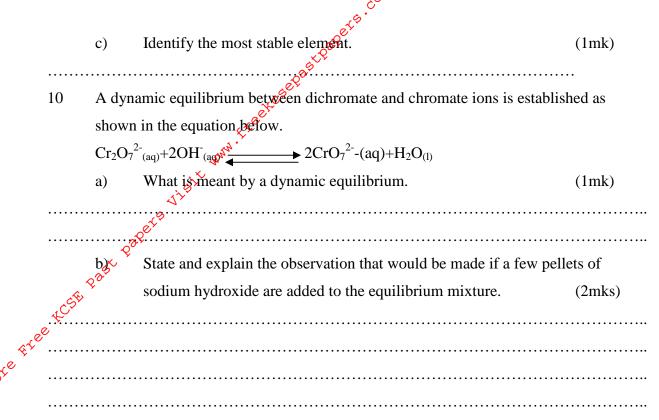

Candidates should check the questions paper to ascertain that all pages are printed as indicated and no questions are missing.

1	Two papers A and B were power was placed on the lowest part a) Indicate below the old with the	(6) The second of the second o	vas placed at the tip.	Paper A
e CSF	Paper A.		Paper B.	
	b) Explain the observation	ions made on paper A.	(1n	nk)
2	The table below shows the n 10cm ³ of water.	umber of drops of soap	solution needed to lather v	with
	Sample	Cold water	Heated water	er
	A	5	5	
	В	6	2	
	С	2	2	
		kely to be in:	`	
	b) State TWO methods	used in removing perm	anent hardness of water.(1	mk)

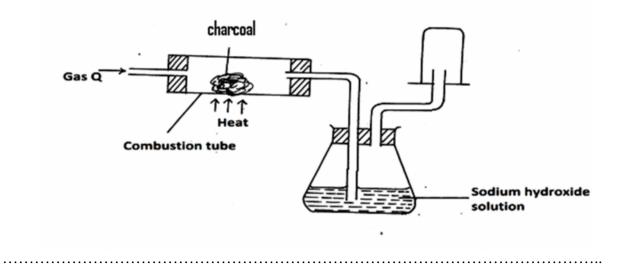
	m ³ of sodi	um hydroxide solution cont	aining 8 Ng/dm³ wer	e required f	or comp
neu		of 0.18g of a dibasic and H			
	acid.	kteet en			(3mks)
	رن نا ^ن	, X			
	oe ^z o				
4 The	flow char	t below shows some of the s		cture of the	sodium
carb	onate by t	he Solvay process. Use it to	answer the question	ns that follo	w;
s FC.					
N_			$CO_2(g)$		
N		→ Brine		NH ₄ Cl _{(a}	+ aq)
			Step I	NaHCC) _{3(s)}
			-		
					,Step
			N. 1100	 	NILL
			NaHCO₃	(s)	NH ₄
				Step II	I
			<u></u>		
			Na ₂ CO ₃		
	Name	the substance N			(1mk)
a)		the substance iv			(IIIII)
a)					
a) b)		the process taking place in.			
		Step II			(1mk)
	Name	Step II			(1mk) (1mk)

5		solubility of copper (II) Sulphate at 75^{0}_{C} is $55g/100g$ of wate at 15^{0}_{C} . What mass of crystals would be deposited if a satura	
	of wa	ater is cooled from 75°_{C} to 15°_{C} .	(3mks)
		igi ^X	
 6	Use	1.20 1.20 1.20	
çe ^e tes	Use to	Green Ye	llow fumes
		Molten	P _b Cl ₂
	a)	On the diagram label the cathode.	P _b Cl₂ (1mk)
	b)	On the diagram label the cathode. Write the equation of the reaction on the cathode.	(1mk) (1mk)
 7	b)	On the diagram label the cathode.	(1mk) (1mk) (1mk)
 7 	b)	On the diagram label the cathode. Write the equation of the reaction on the cathode. t is fuel?	(1mk) (1mk) (1mk) (1mk)

8 The diagram below represents parts of a set up for preparing and collecting a dry



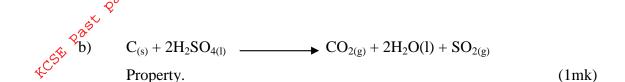
a)	Complete the diagram.	(1mk)
b)	Write the equation for the reaction in tube 1.	(1mk)
 •		
c)	State ONE commercial use of the oxygen gas.	(1mk)


9 The table below shows some elements and their atomic numbers. The letters do not represent the actual symbols of the elements. (1mk)

Element	X	Y	Z	R	S	Q	T
Atomic Number	11	10	20	13	14	4	8

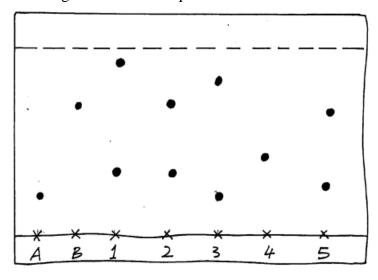
	a)	From the given letters of elements select two elements with the sa properties.	me chemica
•••••	b)	Write the formulae of a compound formed when element S reacts element T.	(1mk)

The diagram below shows an experimental set up for preparing Carbon (II) Oxide. Study it and answer the questions that follow.



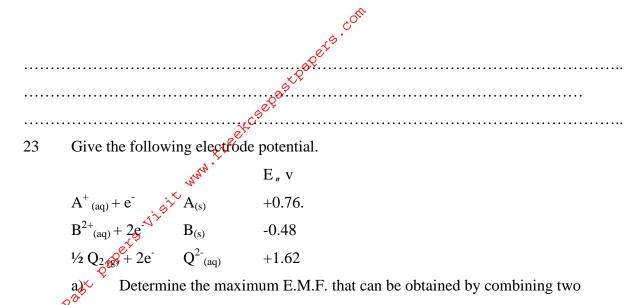
b) State the reason why Carbon (II) Oxide is collected in the manner illustrated (1mk)

c) Describe a simple test that can be used to distinguish between carbon (II) oxide and carbon (IV) oxide. (1mk)


12	a)	State the Graham's law	of diffusion.	(1mk
		Water .			
 	b)	A sample of unknown co	uires 28.3seconds to di mber of oxygen molec	y analysis to contain suffuse through aperturules pass through the mass of Z. (O=16,S=	sulph re int sam =32).
				······································	2mk
13	_	ain why aluminum chloridenesium chloride is in solubl	_		nhyo 2mk
14	a)	Define half-life of radioi	•	,	 1mk
••••	b)	X grammes of a radioiso	topes takes 100days to	decay to 20g.If half-	
		same element is 25 days,	Calculate the initial ma		ope. 2mk
					2mk
	 Evnl				2mk

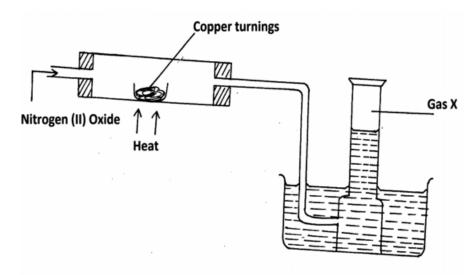
.....

.....


- When excess chlorine gas is bubbled through dilute sodium hydroxide solution, the resulting solution acts as a bleeching agent.
 - a) Write an equation for the reaction between chlorine gas and sodium hydroxide. (1mk)
- b) Explain how the resulting solution acts as a bleeching agent. (2mks)
- During Olympics, urine sample of five short distance runners were taken and tested for the presence of two illegal steroids by paper chromatography. Methanol was used as the solvent. A chromatogram from the test appeared as shown below. Study the chromatogram and answer question that follow.

KEY

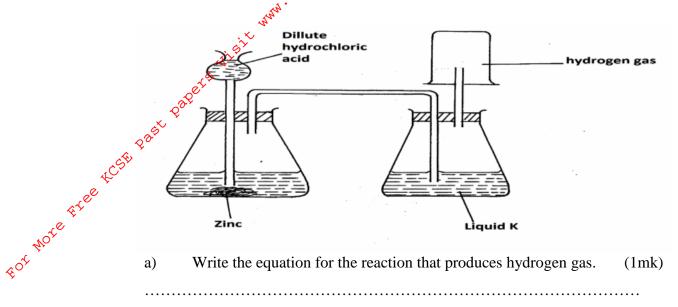
SPOT A - STEROID A
SPOT B - STEROID B
SPOT 1 - ATHLETE 1
SPOT 2 - ATHLETE 2
SPOT 3 - ATHLETE 3
SPOT 4 - ATHLETE 4
SPOT 5 - ATHLETE 5


	a reason.	(1m
•••••	······································	
	b) Identify the athletes that tested positive for the illegal steroids.	(2m
	٠٠٠٠ <u>٧</u> ٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠	
20	A carbonate was suspected to be an ore of iron. Describe how the prese	nce of i
20 ************************************	be confirmed in the ore.	(3n
•••••		•••••
•••••		•••••
21	Use the reaction scheme below to answer the questions that follow.	•••••
	1	
	Alcohol x Process Y Propene $H_{2(g)}$ Com	pound z
	Conc H ₂ SO ₄ Nil	pouriu z
	$200^{0}\mathrm{C}$	
	a) Draw the structure of alcohol X.	(1n
	, , , , , , , , , , , , , , , , , , ,	
	b) Name the process Y.	(1n
	······································	
	c) Write the molecular formula of the 5 th member in which propen	
		(1n
22	Describe how a solid sample of Lead (II) Sulphate would be prepared u	sing th
	following reagents. Dilute Sulphuric (VI) acid, Nitric (V) acid, solid lea	nd (II)
	Carbonate	

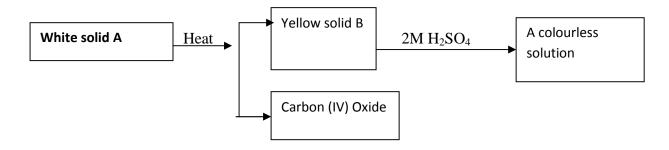
of the given half cells. (1mk)

- b) Write the cell representation for the cell in (a) above. (1mk)
- c) What would be the electrode potential of A if B was made standard electrode.

24 Study the set up below and answer the questions that follow.


- a) Identify gas X. (1mk)
- b) State the observation made in the combustion tube. (1mk)

(1mk)


Write equation for the reaction in combustion tube c)

25 The diagram below represents an arrangement for preparing and collecting dry hydrogen. Study it and answer the questions that follow.

- Write the equation for the reaction that produces hydrogen gas. (1mk)
- Name the suitable substance that liquid K is likely to be. (1mk) b)
- Explain why it is not advisable to use nitric (v) acid as an alternative to c) hydrochloric acid in the preparation experiment.

26 The scheme below represents some reactions starting with a white solid A.

Identify the solids; a)

> (1mk) A

В (1mk)

	b) Write an equation for the reaction between B and 2M Sulphuric aci	d.(1mk)
27	Using dots (.) and (xx) show bonding in:	
	a) The compound formed when nitrogen reacts with fluorine (Atomic $= 9$, $N = 7$)	number F (2mks)
hote fitee Acsi		
note	b) Sodium oxide (Atomic number Na = 11, O = 8)	(1mk)
28	An aide of potassium has a relative formula mass of 110 , if $2.75g$ of the or contains $1.95g$ of potassium ,determine the formula of the oxide. $K=39.0$	
29	Explain what happens when blue litmus paper is dipped in methylbenzene	in which
	hydrogen chloride is bubbled.	(2mks)
30	Give reason for use of aluminum in sufurias but not steam boilers.	(2mks)