\qquad
\qquad

233/3
CHEMISTRY
PAPER 3
PRACTICALS ${ }_{c}{ }^{\text {s }}$
MAY/JUNE 2014
TIME: 2 1/4 $^{-1}$ HOURS

Q^{2}
 EKSIKA JOINT EVALUATION TEST.

Kenya Certificate of Secondary Education (K.C.S.E)

233/3
CHEMISTRY
PAPER 3
PRACTICALS
MAY/JUNE 2014
TIME: $1^{11 / 4}$ HOURS

INSTRUCTIONS TO CANDIDATES.

a) Write your name and index number in the spaces provided above.
b) Sign and write the date of examination in the spaces provided above.
c) Answer ALL questions in the spaces provided above.
d) All workings MUST be clearly shown where necessary.
e) You are not allowed to work with the apparatus for the first 15 minutes of the $21 / 4$ Hours allowed for this paper.This time is to enable you read the question paper and make sure you have all the chemicals and the apparatus that you may need.
f) Mathematical tables and silent electronic calculators may be used.

FOR EXAMINERS' USE ONLY.

Question	Maximum Score	Candidates' Score
1	12	
2	40	
3	14	
	40	

This paper consists of 4 printed pages.
Candidates should check the questions paper to ascertain that all pages are printed as indicated and no questions are missing.

You are provided with:
Solution M 0.2 M hydrochlorie acid,
Solution F containing 15.3 g ger litre of basic compound $\mathrm{G}_{2} \mathrm{X} . \mathrm{H}_{2} \mathrm{O}$.
You are required to deterimine the relative atomic mass of G.

PRECEDURE:

Place solution M in abyurrette , pipette $25 \mathrm{~cm}^{3}$ of solution F into a $250 \mathrm{~cm}^{3}$ conical flask. Add two drops of methyl orange indicator and titrate. Record your results in the table below.
Repeat the precedure two more times and complete table I.
Table I
a)

Volume of solution M used $\left(\mathrm{cm}^{3}\right)$
Initial burette reading
\quad ii) What is the average volume of solution M.?

\qquad
\qquad
b) Given that one mole of F reacts with 2 moles of M . Calculate the;
i) number of moles the basic compound, $\mathrm{G}_{2} \mathrm{X}, 10 \mathrm{H}_{2} \mathrm{O}$ in the volume of solution F used.
\qquad
\qquad
\qquad
\qquad
ii) Concentration of solution F in mole per litre. (2mks)
\qquad
\qquad
\qquad
\qquad
iii) Relative formula mass of the basic compound, $\mathrm{G}_{2} \mathrm{X} \cdot 10 \mathrm{H}_{2} \mathrm{O}$. ($11 / 2 \mathrm{mks}$)
\qquad
\qquad
\qquad
iv) relative atomic mass of G (Relative $\mathbf{f} \boldsymbol{0}$ rmula Mass of $\mathrm{X}=60$, atomic mass of $\mathrm{H}=1.0$,
$\mathrm{O}=16.0$).
\qquad
\qquad
\qquad जrs.
2 You are provided with:
$1 \quad 1.899 \mathrm{~g}$ of solid P , solid P is adiabatic acid $\mathrm{H}_{2} \mathrm{X}$.
2 O 0.5 M Solution of the dibasic acid, $\mathrm{H}_{2} \mathrm{X}$, Solution V.
$3_{5}{ }^{\alpha}$ Sodium hydroxide, Solution K.
${ }^{\rho}{ }^{\gamma}$ You are required to determine:
a) i) the molar heat of solid P .
ii) the heat of reaction of one mole of the dibasic acid with sodium hydroxide.
b) Calculate the heat of reaction of solid $\mathrm{H}_{2} \mathrm{X}$ with aqueous sodium hydroxide.

PROCEDURE I.

Place $30 \mathrm{~cm}^{3}$ of distilled water into a 100 ml beaker. Measure the initial temperature of the water and record it in the table II below. Add all the solid P at once; stir the mixture carefully with the thermometer until all the solid dissolves. Measure the final temperature reached and records it in the table II

Table II

Final temperature $\left({ }^{\circ} \mathrm{c}\right)$		
Initial temperature $\left({ }^{\circ} \mathrm{c}\right)$		
a) \quad Determine the change in temperature $\Delta \mathrm{T}_{1}$	$\left(1^{1 / 2 \mathrm{mks})}\right.$	

b) Calculate the:
i) heat change when $\mathrm{H}_{2} \mathrm{X}$ dissolves in water, (Assuming the heat capacity of the solution is $4.2 \mathrm{Jg}^{\mathrm{o}}{ }_{\mathrm{K}}{ }^{-1}$ and density is $1 \mathrm{~g} / \mathrm{cm}^{3}$) (2 mks)
ii) number of moles of the acid that were used. (Relative formula mass of $\mathrm{H}_{2} \mathrm{X}$ is 126)
iii) molar heat of solution $\Delta \mathrm{H}_{1}$ solution of the acid $\mathrm{H}_{2} \mathrm{X}$.

PROCEDURE II.

Place $30 \mathrm{~cm}^{3}$ of solution $V_{\text {into }}$ a $100 \mathrm{~cm}^{3}$ beaker. Measure the initial temperature and record it in table III below. Meassure $30 \mathrm{~cm}^{3}$ of sodium hydroxide, solution K.Add all of the $30 \mathrm{~cm}^{3}$ of t of solution K at once to V in the beaker. Stir the mixture with the thermometer. Measure the final temperafgire reached and record it in table III.

Table III.

a)

Prinal temperature $\left({ }^{\circ} \mathrm{C}\right)$	
Initial temperature $\left({ }^{\circ} \mathrm{C}\right)$	

b) Determine the change in temperature, $\Delta \mathrm{T}_{2}$.
c) Determine the:
i) heat change for the reaction (Assume the heat capacity of the solution is

$$
\begin{equation*}
4.2 \mathrm{Jg}-1^{-1} \mathrm{k}^{+1} \text { and density is } 1 \mathrm{~g} / \mathrm{cm}^{3} \tag{2mks}
\end{equation*}
$$

ii) Number of moles of the acid used $\left(\mathrm{H}_{2} \mathrm{X}\right)$.
...
\qquad
\qquad
iii) Heat of reaction, ΔH_{2} of one mole of the acid $\mathrm{H}_{2} \mathrm{X}$ with sodium hydroxide
\qquad
\qquad
\qquad
\qquad
d) Given that,
$\Delta \mathrm{H}_{1}$ is the heat for reaction $\mathrm{H}_{2} \mathrm{X}_{(\mathrm{s})} \xrightarrow{\text { water }} 2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{X}^{2-}{ }_{(\text {aq })}$
$\Delta \mathrm{H}_{2}$ is the heat for the reaction $\mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

Calculate $\Delta \mathrm{H}_{3}$ for the reaction $\mathrm{H}_{2} \mathrm{X}_{\left(\mathrm{Sa}^{2}\right.}{ }^{q^{-}} 2 \mathrm{OH}^{-} 1_{(\mathrm{aq})} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{X}^{2-}(\mathrm{aq})(2 \mathrm{mks})$
\qquad
\qquad
\qquad
\qquad
\qquad
3 You are provided with solid S. Carry out the tests below and record your observations and inferences in the spaces provided.

Place about one third of solid S in a dry test tube. Heat the solid gently and the strongly. Test any gases produced with blue and red litmus papers.

b) Dissolve the remaining portion of solid S in $8 \mathrm{~cm}^{3}$ of distilled water.
i) Divide the solution into the first portions, to the first portion, add aqueous sodium hydroxide drop wise until in excess.

Observations	Inferences	
	$(1 \mathrm{mk})$	

ii) To the second portion , add aqueous ammonia dropwise in excess.

Observations	Inferences
$(1 \mathrm{mk})$	

iii) To the third portion, $10 \mathrm{~cm}^{3}$ of barium chloride solution.

iv) To the forth portion, add about $1 \mathrm{~cm}^{3}$ of Lead (II) nitrate solution.

Observations	Inferences
	$(1 \mathrm{mk})$

v) To the fifth portion, add about 2 ml of hydrogen peroxide then about $1 \mathrm{~cm}^{3}$ of sodium hydroxide solution.

Observations	Inferences
	$(1 \mathrm{mk})$

