	contraction of the second
NAME	INDEX NO
CANDIDATE'S	SIGNATURE
SCHOOL	
	ereet.
233/3	with .
CHEMISTRY PAPER 3	Jibit

233/3 **CHEMISTRY** PAPER 3 **PRACTICALS** MAY/JUNE 2014 TIME: 2.1/4 HOURS 200

EKSIKA JOINT EVALUATION TEST.

Kenya Certificate of Secondary Education (K.C.S.E)

233/3

FOT NOTE FILE CHEMISTRY PAPER 3 PRACTICALS **MAY/JUNE 2014** TIME: 1 ¹/₄ HOURS

INSTRUCTIONS TO CANDIDATES.

- Write your name and index number in the spaces provided above. a)
- Sign and write the date of examination in the spaces provided above. b)
- c) Answer<u>ALL</u> questions in the spaces provided above.
- d) All workings MUST be clearly shown where necessary.
- You are not allowed to work with the apparatus for the first 15minutes of the 21/4 e) Hours allowed for this paper. This time is to enable you read the question paper and make sure you have all the chemicals and the apparatus that you may need.
- f) Mathematical tables and silent electronic calculators may be used.

Question	Maximum Score	Candidates' Score		
1	12			
2	40			
3	14			
	40			

FOR EXAMINERS' USE ONLY.

This paper consists of 4 printed pages.

Candidates should check the questions paper to ascertain that all pages are printed as indicated and no questions are missing.

1

1 You are provided with:

Solution M 0.2M hydrochlorigacid,

Solution F containing 15.3 geper litre of basic compound G₂X.H₂O.

You are required to determine the relative atomic mass of G. WWW

PRECEDURE:

Place solution M in a purette ,pipette 25cm³ of solution F into a 250cm³ conical flask. Add two drops of methyl orange indicator and titrate. Record your results in the table below. Repeat the procedure two more times and complete table I.

pers.com

Table I

A.	SE Pat		Ι	II	III
م^جو Fin	nal burette	reading			
5 ^{ce} Init	tial burette	e reading			
s ^e € ^e Fin Vo	olume of so	olution M used (cm ³)			
		· · · · · · · · · · · · · · · · · · ·		(4r	nks)
	ii)	What is the average volume of solution M.?		(1r	nk)
	• • • • • • • • • • • • • • • •			•••••	• • • • • • • • •
 b)	Giver	\mathbf{r} that one mole of F reacts with 2 moles of M . Calculat	ta tha:	•••••	
b)	i)	n that one mole of F reacts with 2moles of M. Calcula number of moles the basic compound,G ₂ X, 10H ₂ O		lume of sc	Jution
	1)	-	In the vo		Junon
		Fused		(2r	nks)
		F used.		(2r	nks)
		F used.		(2r	nks)
····		F used.		(2r	nks)
····· ····		F used.		(2r	nks)
····· ····	 ii)				nks) nks)
····· ····	 	F used. Concentration of solution F in mole per litre.			••••••
····· ···· ····	ii)				••••••
····· ····	ii)				••••••
····· ···· ····	ii)				••••••
····· ···· ····	ii) iii)			(2r	nks)
····· ···· ····		Concentration of solution F in mole per litre.		(2r	nks)
····· ···· ····		Concentration of solution F in mole per litre.		(2r	nks)

			es. com	
iv)	relative ator	nic mass of G (Relative for	rmula Mass of X=60,	atomic mass of H=1.0 ,
	O=16.0).	nic mass of G (Relative for		(1 ½ mks)
		the form		
2	You are pro	4.		
	1 1.89	9g of solid P, solid P is adi	abatic acid H ₂ X.	
	2 20.5N	A Solution of the dibasic ac	id , H_2X , Solution V.	
		um hydroxide, Solution K.		
<u>ج</u>	You are req	uired to determine:		
AC.	a) i)	the molar heat of solid l	Р.	
\$ ^{ree}	ii)	the heat of reaction of o	one mole of the dibasic	acid with sodium
More		hydroxide.		
FOR MORE Free tos	b) Calc	ulate the heat of reaction o	f solid H ₂ X with aqueo	ous sodium hydroxide.

PROCEDURE I.

Place 30cm³ of distilled water into a 100ml beaker. Measure the initial temperature of the water and record it in the table II below. Add all the solid P at once; stir the mixture carefully with the thermometer until all the solid dissolves. Measure the final temperature reached and records it in the table II

Table II

Fina	l temperature (°	c)		
	Initial temp	erature (°c)		
a)	Determine th	ne change in temperature	T ₁	(1½mks)
 b)	Calculate the	e:		
	i)	heat change when H_2X	dissolves in water, (Assuming	the heat capacity
		of the solution is 4.2Jg	${}^{o}_{K}$ ${}^{-1}$ and density is 1g/cm ³)	(2mks)
	ii)	number of moles of the	e acid that were used. (Relative	formula mass of
		H ₂ X is 126)		(1mk)
•••••				
••••				
••••	iii)	molar heat of solution	H_1 solution of the acid H_2X .	(1mk)

PROCEDURE II.

••

eree! Place 30cm³ of solution V_sinto a 100cm³ beaker. Measure the initial temperature and record it in table III below. Measure 30cm³ of sodium hydroxide, solution K.Add all of the 30cm³ of t of solution K at once to V in the beaker. Stir the mixture with the thermometer. Measure the final temperatore reached and record it in table III.

<u>Tab</u>le II<mark>I</mark>S

	a)	\$ €	
	Fina	l temperature (° _C)	
\$ ⁴	Initia	al temperature (° _C)	
More	L		(1 ¹ / ₂ mks)
\$°°			
	b)	Determine the change in temperature T_2	$(\frac{1}{2} \text{ mk})$

Det	Determine the change in temperature, T_2 . (¹ / ₂ mk)				
Det	etermine the:				
i)	heat change for the reaction (Assume the heat capacity of the solut	ion is			
	4.2Jg- 1_{k}^{-1} and density is $1g/cm^{3}$	(2mks)			
		(1]-)			
ii)		(1mk)			
iii)	Uset of reaction All of one male of the said II V with active h				
111)	Heat of reaction , ΔH_2 of one mole of the acid H ₂ X with sodium h	(1mk)			
••••					
••••					
••••					
••••					
Giv	ven that,				
Η	H_1 is the heat for reaction $H_2X_{(s)}$ water $H_{(aq)} + X^{2}_{(aq)}$				
ŀ	H_2 is the heat for the reaction $H^+_{(aq)}+OH^{(aq)}$ $H_2O_{(l)}$				

		co ^{rt}	
		Calculate H ₃ for the reaction H ₂ X _{(a} + 2OH ⁻¹ (aq) \longrightarrow 2H ₂ O _(l) + X ²⁻ (aq)(2mks)	
		the construction of the co	
	3	You are provided with solid S. Carry out the tests below and record your observation and interences in the spaces provided.	18
		a) Place about one third of solid S in a dry test tube. Heat the solid gently and the strongly. Test any gases produced with blue and red litrus papers	ne
	SE	strongly. Test any gases produced with blue and red litmus papers.	
د	Observ	vations Inferences	
FOT NOTE FIL			
\$ ⁰		(1mk)	
		(2mks)	

- b) Dissolve the remaining portion of solid S in 8cm³ of distilled water.
 - Divide the solution into the first portions, to the first portion, add aqueous sodium hydroxide drop wise until in excess.

Observations	Inferences
	(2mks)
(1mk)	

ii) To the second portion, add aqueous ammonia dropwise in excess.

Observations	Inferences
	(1mk)
(1mk)	(Think)

5

v) To the fifth portion, add about 2ml of hydrogen peroxide then about 1cm³ of sodium hydroxide solution.

Observations	Inferences
	(1mk)
(1mk)	

For More Pree KCSB Past pagers Wall www.freekcaepastpagers.com

©2014 Multytech Printers Eldoret