NAME \qquad
\qquad

SCHOOL \qquad

121/2
MATHEMATICS
PAPER 2
MAY/JUNE 2014
TIME: $2_{2}^{1 / 2}$ HOURS

EKSIKA JOINT EVALUATION TEST. Kenya Certificate of Secondary Education (K.C.S.E)

121/2
MATHEMATICS
PAPER 2
MAY/JUNE 2014
TIME: $21 / 2$ HOURS

INSTRUCTIONS TO CANDIDATES.

1) Write your name and index number in the spaces provided above.
2) Sign and write the date of examination in the spaces provided above.
3) This paper consists of two section I and II.
4) Answer ALL questions in section I and only five questions from section II.
5) Answers and working must be written on the question paper in the spaces provided below each question
6) Marks may be given for correct working even if the answer is wrong
7) Non-programmable electronic calculators may be used.

FOR EXAMINERS' USE ONLY.

SECTION I

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	TOTAL

SECTION II

$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	TOTAL

Grand Total

1 Use logarithms only to evaluate,
$\sqrt[4]{\frac{72.36 \times 0.69{ }^{2} a^{2} 5^{5}}{\log 168.4 y^{5}}}$
Correct to four significant figures.

2 Make 4 the subject of the formula.

$$
\begin{equation*}
t=\frac{2 m}{n} \quad \sqrt{\frac{L-A}{3 k}} \tag{3mks}
\end{equation*}
$$

3 Express the recurring decimal beloit as a fraction; 4.372 leaving your answer in the form of a / b where a and b afe integers.

Determine the amplitude, period and the phase angle of the wave represented by the equation.

$$
\begin{equation*}
y=\frac{-2}{3} \sin \left(\frac{2}{5} x+40^{\circ}\right) \tag{3mks}
\end{equation*}
$$

5 Given that $\frac{3}{3+\sqrt{5}}+\frac{3 \sqrt{5}}{3-\sqrt{5}}=a+b \sqrt{5}$. Find the values of a and b (4mks)

6 The dimensions of a cuboid are 4.5 cm by 3.5 cm by 2 cm . Find the percentage error in its volume giving your answerto 2 significant figure.

A car was valued at kshs.500,000 in January 2010.Each year its value depreciated at 12% p.a.After how long would the value depreciate to kshs. 250,000 ? (3mks)

8 Given that the matrix $\left(\begin{array}{cc}5-x & 2 \\ 3 x & 4\end{array}\right)$ has no inverse, find x.
(2mks)

9 In the figure below ABC is a tangent to the circle at point B . Given that $\mathrm{BE}=6.9 \mathrm{~cm}$, $\mathrm{FE}=7.8 \mathrm{~cm}, \mathrm{GE}=4.1 \mathrm{~cm}, \mathrm{DC}=1 \mathrm{~d} 22 \mathrm{~cm}$ and $\mathrm{ED}=\mathrm{xcm}$. Determine the length BC , give your answer in four significant figures.

10 Find the radius and the co-ordinates of the centre of the circle whose equation is $1 / 2 x^{2}+1 / 2 y^{2}=3 x-5 y-9$.

11 A quantity P varies partly as t and p artly as the square of t.When $t=20, p=45$, and when $\mathrm{t}=24, \mathrm{p}=60$.
a) Express p in termof t.
b) $x^{e^{2}}$ Find p when $\mathrm{t}=32$.

12 The position vectors of points A and B are $a=2 i+j-8 k$ and $b=3 i+2 j-2 k$ respectively. Find the magnitude of $A B$.

13 Write the expression of $(2-1 / 5 \mathrm{x})^{6}$ up to the term in x^{4}.Hence use the expansion to find the value of $(1.96)^{6}$ correct to 3 decimal places.

14 Five men working 8 hours daily goomplete a piece of work in 3 days. How long will it take 12 men working 5 hours aday to complete the same work.

Find the integral values of x which satisfy $6 \leq 2 x+1$ and $5 x-29<-4$. (3mks)

16 In a fund-raising committee of 45 people, the ratio of men to women is $7: 2$.Find the number of women required to join the existing committee so that the ratio of men to women changes to $5: 4$.

SECTION II (50 MARKS)

Attempt àny five questions from this section

17 The table below givas the income tax rates.

$j y^{2 s^{2}} \text { Income (k£) }$	Rate (p.a)
$2^{5} 5^{5} \quad 1-1980$	10\%
$Q^{\text {® }}$ 1981-3960	15\%
3961-5940	25\%
3941-7920	35\%
7921-8650	45\%
Over 8651	50\%

a) Calculate income tax of Wanga's taxable income of kshs.50,400 per month allowing a family relief of kshs. 520 per month.
(8 mks)
b) Calculate the total tax as a percentage of taxable income
(2mks)

18 a) Draw $\triangle \mathrm{PQR}$ whose vertices are $\mathrm{P}(1,1) \mathrm{Q}(-3,2)$ and $\mathrm{R}(0,3)$ on the grid provided

b) Find and draw the image ger $\triangle \mathrm{PQR}$ under the transformation whose matrix is $\left(\begin{array}{ll}3 & 0 \\ 1 & 1\end{array}\right)$ and label the cime ${ }^{\text {ev }}$
$P^{\prime} Q^{\prime} R$ 'iss then transformed into $P^{11} Q^{11} R^{11}$ by the transformation with the $e^{\substack{\text { matrix }}}\left(\begin{array}{cc}-1 & 0 \\ 1 & 3\end{array}\right)$
c) Find the co-ordinates of $\mathrm{P}^{11} \mathrm{Q}^{11} \mathrm{R}^{11}$ and draw $\mathrm{P}^{11} \mathrm{Q}^{11} \mathrm{R}^{11}$ (3mks)
d) describe fully the single transformation which maps $P Q R$ onto $P^{11} Q^{11} R^{11}$ find the matrix of this transformation
19) The probability of passing K.C.P. depends on performance in the school mock examination. If the candidate farsses in mock, the probability of passing K.C.P.E is $4 / 5$. If the candidate fails in mact passes K.C.P.E, the probability of getting employed is $1 / 3$, the probability of passing mock is $2 / 3$.
a). Braw a well label tree diagram to represent the above information
b) Use your tree diagram in (a) above to find the probability that she
i) Passes KCPE exams
(2mks)
ii) Gets employed
iii) Passes KCPE and gets employed
iv) Passes mock and gets employed
20. The diagram below shows triangle O.A.B in which N is the mid point of AB.Mis a point on OA such that OM . $\mathrm{N}^{2} \mathrm{~A}=2$ 2:1.Lines ON and BN meet at X such that vector $\mathrm{OX}=\mathrm{h}$ vector ON and $, \mathrm{M}, \stackrel{x}{x}=\mathrm{kMB}$

Given that vector $\mathrm{OA}=\mathrm{a}$ and vector $\mathrm{OB}=\mathrm{b}$
i) Express the following interms of a and b
a) Vector $\mathrm{AB} \quad$ (1mk)
b) Vector ON (2mks)
c) Vector BM (1mk)
ii) By expressing vector OX in two different ways ,determine the values of h and k
(6mks)
21). Using a ruler and a compass only
a) Construct a parallelogram ABCD such that $\mathrm{AB}=10 \mathrm{~cm} \mathrm{BC}=7 \mathrm{~cm}$ and $<\mathrm{ABC}$ 105°
b) Construct the roci of P and Q within the parallelogram such that $\mathrm{AP}<4 \mathrm{~cm}$ and

$$
\mathrm{BQ}<6 \mathrm{~cm}
$$

c) Calculate the area within the parallelogram and outside the region bounded by the two loci
22. a) Complete the table below

x	-30	0	30	60	90	120	150	180	210	240	270
$\operatorname{Sin}(\mathrm{x}+30)$	0	0.50		1.00	0.87			-0.50			-0.87
$\operatorname{Cos}(\mathrm{x}-15)$	0.71		0.97		0.26				-0.97	-0.71	-0.26

b) Draw the graph of $y=\sin _{2}\left(x^{2}+30\right)$ and $y=\cos (x-15)$ for $-30 \leq X \leq 70^{\circ}$ on the same grid. Take 1 cm gु ${ }^{\circ}$ represent 30° on x -axis and 1 cm to represent 0.2 units on y-axis.

a) Using your graph drawn (b) above
i) Find the values of x for which $\cos (x-15)-\sin (x+30)=0$
(2mks)
ii) State theco-ordinates of the turning point of the curvefor the function $y=\cos$ $(x-15)^{5^{2}}$ on the negative section of y-axis
iii) Estimate the angle corresponding to $\cos (x-15)=0.6$
23. The figure below shows rectangular plot ABCD with $\mathrm{AB}=60 \mathrm{~m}$ and $\mathrm{BC}=45 \mathrm{~m}$. PN is a vertical pole of length 30 m to which four taut wire $\mathrm{PB}_{1}, \mathrm{PC} 1, \mathrm{PD}$ and PA are attached

Calculate

a) $x^{2} e^{2,}$ length of the projection of PCon the plane ABCD
(2mrks)
b) the angle PC made with the base ABCD
c) The angle between the planes PBC and ABCD
(3Mrks)
c) If point A is to be the North of point C. calculate the bearing of B from A
24. a) The first term of an arithmetig progression (AP) is 2 . The sum of the first 8 terms of AP is 256 .
i) Find the commer difference of AP
ii) Given that the sum of the first n terms of the AP 416. Find n (2mks)
b) The $3^{\text {rd }}, 5^{\text {th }}$, and $8^{\text {th }}$ terms of another AP forms the first three terms of a geometric progression (GP).If the common difference of the AP is 3
.Find
i) The first term of GP
ii) The sum of the first 9 terms of the GP to 4 s.f
(2mks)

