NAME	්	INDEX NO	
CANDIDATE'S SIGN	e ^{ft}	DATE	•••••
SCHOOL	ast ^Q		
	\$ PO		
232/1	iteekczegos.		
PHYSICS	,		
PAPER 1			
THEORY			
MAY/JUNE 2014			
TIME: 2 HOURS			

0

EKSIKA JOINT EVALUATION TEST.

Kenya Certificate of Secondary Education (K.C.S.E)

232/1

PHYSICS

PAPER 1

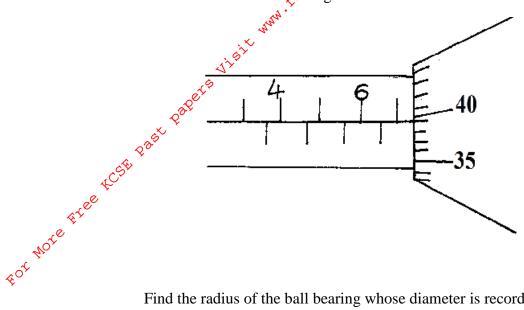
THEORY

MAY/JUNE 2014 TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES.

- 1) Write your name and index number in the spaces provided above.
- 2) Sign and write the date of examination in the spaces provided above.
- 3) This paper consists of section A and B.
- 4) Answer <u>ALL</u> questions in section A and B.
- 5) All your workings must be clearly shown as must be awarded for correct working even if the answer is wrong.
- 6) Non programmable silent scientific calculators and KNEC mathematical tables may be used.

FOR EXAMINERS' USE ONLY.


SECTION	QUESTIONS	MAXIMUM SCORE	CANDIDATES SCORE
A	1 - 13	25	
В	14	10	
	15	12	
	16	10	
	17	12	
	18	11	
		80	

This paper consists of 8 printed pages.

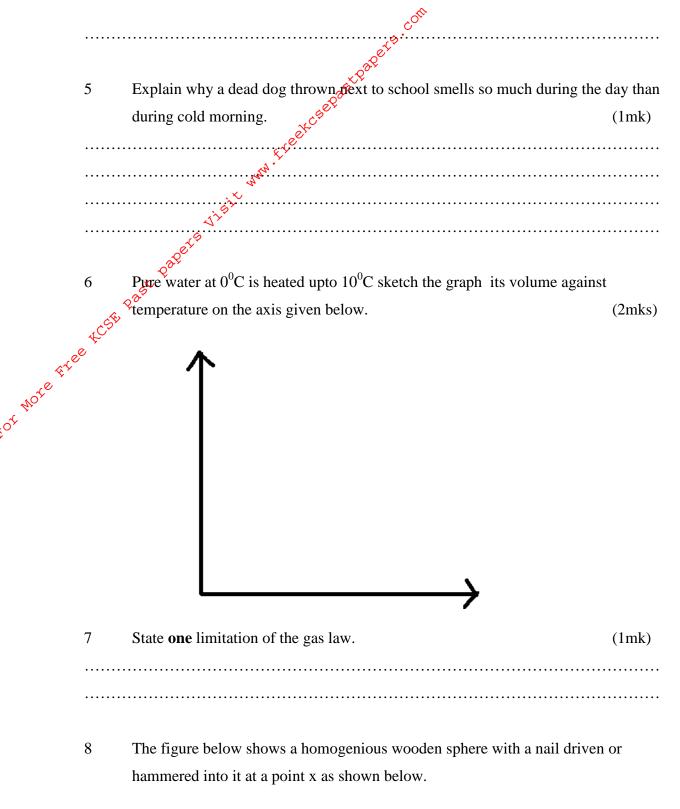
Candidates should check the question paper to ascertain that all pages are printed as indicated and no questions are missing.

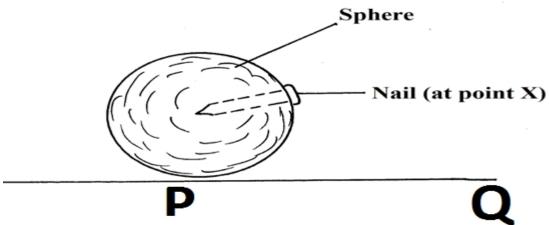
Answer All the questions in this section in the spaces provided after each question.

1 The micromer scewguage shown had an error of -0.03mm and was used to measure the diameter of a ball bearing.

(2mks) State **two** properties of a liquid that is considered during the construction of a liquid – in - glass thermometer.(2mks)

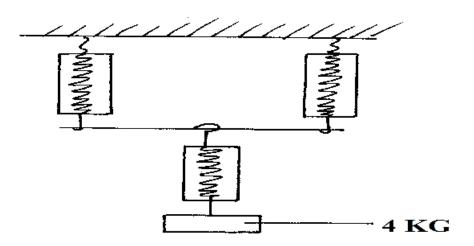
Find the radius of the ball bearing whose diameter is recorded by the instrument.


	beam.	(IIIK)
4	Water tanks supplying showers and taps in a house are erected as high as	
	possible.Exaplain.	(2mks)
• • • • • • • • • • • • • • • • • • • •		


Explain why steel is selected as a better material for reinforcement for a concrete

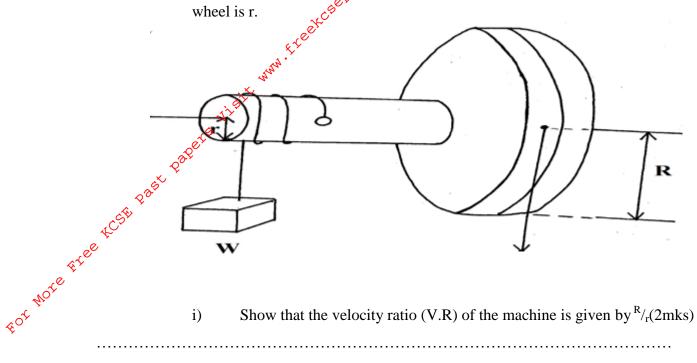
©2014 Multytech Printers Eldoret

2


3

	The sphere is allowed to roll after a little push on it. On what position	will it settle
	along the plane PQ.Give a reason for your answer.	(2mks)
		
	and i	
9	A drop of oil has a volume of $3.0 \times 10^{-6} \text{m}^3$ and spreads to form a patch	of radius 16c
	on the surface of water. Determine the thickness of the oil patch.	(3mks)
<u>.</u>	\$	
4¢.		
• • • • • •		
10	A ball is kicked from a table top horizontally so that it moves and fall	l some distanc
	on the horizontal ground 65cm away from the base of the table. If the	table is a half
	metre tall, calculate the initial horizontal velocity of the ball.	(3mks)
11	Three identical spring balances of spring constant 40N/M and weight	0.5N are use

Three identical spring balances of spring constant 40N/M and weight 0.5N are used to support a load as shown. Determine the total extension of the system. (3mks)


	• • • • • • • • • • • • • • • • • • •			
et catalog at the destate of the second of t				
		, cse Qui		
• • • • •	• • • • • • • • •	e e e e e e e e e e e e e e e e e e e		
• • • • •	• • • • • • • • •	and E.		
• • • • •	• • • • • • • • •	A.		
• • • • •	• • • • • • • •	1	• • • • • • • • • • • • • • • • • • • •	
12	Curt	ains on the doors and windows are seen to bulge or hang ou	itwards when the	
••••	wind	blowing across them. Explain this phenomenon.	(2mk	
13	The	temperature of a cold drink from a fridge was found to be 2	261kelvin.What	
		perature would this be in degrees centigrade.	(1mk	
		SECTION B (55MARKS) All the questions in this section in the spaces provided af		
14		SECTION B (55MARKS)	iter each questio	
	Answer	SECTION B (55MARKS) All the questions in this section in the spaces provided af State the Archimade's principle.	iter each question (1mk	
	Answer a)	SECTION B (55MARKS) All the questions in this section in the spaces provided af State the Archimade's principle.	ter each question (1mk	
	Answer a)	SECTION B (55MARKS) All the questions in this section in the spaces provided af State the Archimade's principle. The reading on a spring balance is 7.2N when a metal ba	ter each question (1mk	
	Answer a)	SECTION B (55MARKS) All the questions in this section in the spaces provided af State the Archimade's principle. The reading on a spring balance is 7.2N when a metal balance its lower end in air the density of the metal is 9.00	ter each question (1mk	
	Answer a)	SECTION B (55MARKS) All the questions in this section in the spaces provided af State the Archimade's principle. The reading on a spring balance is 7.2N when a metal bafrom its lower end in air the density of the metal is 9.00g water is 1.00g/cm ⁻³ . The ball is immersed in water in a F	ter each question (1mk all bearing is hur g/cm ⁻³ and that o	
	Answer a)	SECTION B (55MARKS) All the questions in this section in the spaces provided af State the Archimade's principle. The reading on a spring balance is 7.2N when a metal balance is 1.00g/cm ⁻³ . The ball is immersed in water in a F completely submerged.	ter each question (1mk all bearing is hung/cm ⁻³ and that o	
	Answer a)	SECTION B (55MARKS) All the questions in this section in the spaces provided af State the Archimade's principle. The reading on a spring balance is 7.2N when a metal balance is 1.00g/cm ⁻³ . The ball is immersed in water in a F completely submerged.	ter each question (1mk all bearing is hung/cm ⁻³ and that o	
	Answer a)	SECTION B (55MARKS) All the questions in this section in the spaces provided af State the Archimade's principle. The reading on a spring balance is 7.2N when a metal balance is 1.00g/cm ⁻³ . The ball is immersed in water in a F completely submerged.	ter each question (1mk all bearing is hung/cm ⁻³ and that o	

	ii) What is the reading of the spring balance in N when the	ball is
	completely submerged in water.	(3mks)
ck pa		metal ball (3mks)
	Thread Beaker Ball bearin water	ng
15 a)	Name the two necessary conditions for a body to be in equilibrit	
b)	The handle of a door is fitted furthest from the hinoes during its easy operation. Explain this.	

	c)	If the handle we	ere to be at 75cm t	from the hinger	rs and a force of	70N were
		applied on it to	open the door det	termine the mo	ment of force that	at would be
		experienced.	open the doors de			(3mks)
		July .	······			
		X				
		e ^{rto}				
•	d)v q	Explain what is	meant by a unifor	rm beam in equ		(2mks)
	~ ~ ~					
stee.						
Note fitee.	• • • • • • • • • • • • • • • • • • • •					•••••
•			•••••			•••••
	e)	The figure belo	w shows a simple	form of a drivi	ng board.	
			← 1n	1-+	2m — 👆 🖸	river
					7	
			AV			
					\ C Diving bo	ard
		77777	//////		Diving be	
	1/	//////	//////			

The diver has a mass of 60kg. Calculate the magnitude and show the direction

16 a) The following figure shows a wheel and axle used to raise a load W by applying an effort,F.The radius of the large wheel is R and that of the small

Show that the velocity ratio (V.R) of the machine is given by ^R/_r(2mks) i) Given that r = 8cm and 2R = 20cm, determine the effort required to ii) raise a load of 40N if the efficiency of the system is 85%. (4mks) b) i) Give **two** examples of renewable sources of energy. (2mks)ii) Distinguish between work and effort. (2mks)

		LOTE			
17	a)	An object which is moving over a horizontal surface does not continue its			
		motion with a constant acceleration when the acceleration force is			
		discontinued. The motion decays to zero finally. Explain what is respons	sible		
		for this observation, careful (2mk	ks)		
		gard			
		×			
		, Aire			
		Deris			
	by Q	A trolley of mass 5.00kg resets on a plain horizontal ground shown in th	ıe		
	Pas	figure below.			
1000	>	i) On the sketch below show the forces acting on it when pulled in	one		
2		direction (4ml			
		direction (4iiii	72)		
		•)			
			•		
•••••			• • • •		
•					
		ii) When trolley is pulled with a horizontal force of 24N, the trolley	7		
		accelerates at 3ms ⁻² . Find the frictional force acting on the trolley			
		(3ml	(S)		
•••••	• • • • • • • • •		••••		
•••••			• • • •		
•••••			• • • •		
•••••			• • • •		

	c)		ontal surface. The force produced by the engine is 300N	_
		nrodi	on is 50N. What is the accelerating force and what is the acced?	(3mks)
		produ	iced:	(SIIIKS)
•••••	•••••	•••••	, ky	
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	······································	•••••
•••••	•••••	٠٠٠٠٠٠	· · · · · · · · · · · · · · · · · · ·	
18	a)	State	what is meant by streamline flow.	(1mk)
10	· · · · · ·	Sara race		(11111)
•••••	Sag.	•••••		••••••
100	>	The f	Farma halaw shares a areas sastion of an assaulana wina	(agrafail) with
z Z	b)		figure below shows a cross-section of an aeroplane wing	(aeroioii) with
		the a	eroplane moving in the direction shown by the arrow.	
		,		
		-		_
		.,		>
		•		
			: •	
		:)	Cleately transmiting to show how sin flower most the union	
		i)	Sketch treamline to show how air flows past the wing	_
			move.	(1mk)
•••••	• • • • • • • • • • • • • • • • • • • •	•••••		
	• • • • • • • • • • • • • • • • • • • •	•••••		
		ii)	Explain how dynamic lift of the aeroplane is caused by	y the wing.
				(2mks)
•••••		•••	Write down the expression for the equation of continu	ity and avalain
	c)	i)	Write down the expression for the equation of continu	
			its components.	(2mks)
•••••	•••••	•••••		
•••••	• • • • • • • • • • • • • • • • • • • •	•••••		
	• • • • • • • • • • • • • • • • • • • •			

	ii)	Explain how air is drawn into	the barrel of a Bunsen burner when the
		gas supply is pened.	the barrel of a Bunsen burner when the (2mks)
		· · · · · · · · · · · · · · · · · · ·	
	ζ	1, 2°	
	d) A wa	nter pipe of diameter 5.2cm is con	nected to another pipe of diameter
	1.3cı	m.The speed of the water in the sr	maller pipe is 3ms ⁻¹ . What is the speed of
	the v	vater in the larger pipe.	(3mks)
مريد م	\$e		
Moze #,			

ROF More Free Kesh Past papers Visit with Ereakceapathapets.com