NAME	,	INDEX NO	•••••
CANDIDATES' SIGNATURE	, st. Spart	DATE	•••••
SCHOOL		•••••	
222/2	Ç		
232/3			
Physics The Physics			
D 2			
May/ June 2014 Time: 2 hours 30 min			
Time: 2 hours 30 min			

EKSIKA JOINT EVALUATION TESTKenya certificate of secondary Education (K.C.S.E)

Physics Practical

INSTRUCTIONS TO CANDIDATES

- Write your name and index in the spaces provided above.
- Answer all the questions in the spaces provided in the question paper
- You are supposed to spend the first 15 minutes of the $2^{1}/_{2}$ hours allowed for this paper reading the whole paper carefully before commencing your work.
- Marks are give for a clear record of the observations actually made, their suitability, accuracy and the use made of them
- Candidates are advised to record their observations as soon as they are made.

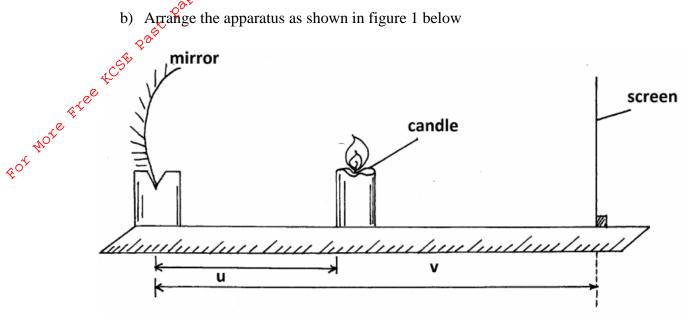
Question 1

For examiners use only

M	a	d	e	g	A (ix)	(iii)	(iv)	Total
Maximum	1	6	5	1	1	1	3	20
score								
Candidates								
score								

Question 2

a	e	F(i)	(ii)	a	B(i) (iii)	(ii)	Total


1. PART A

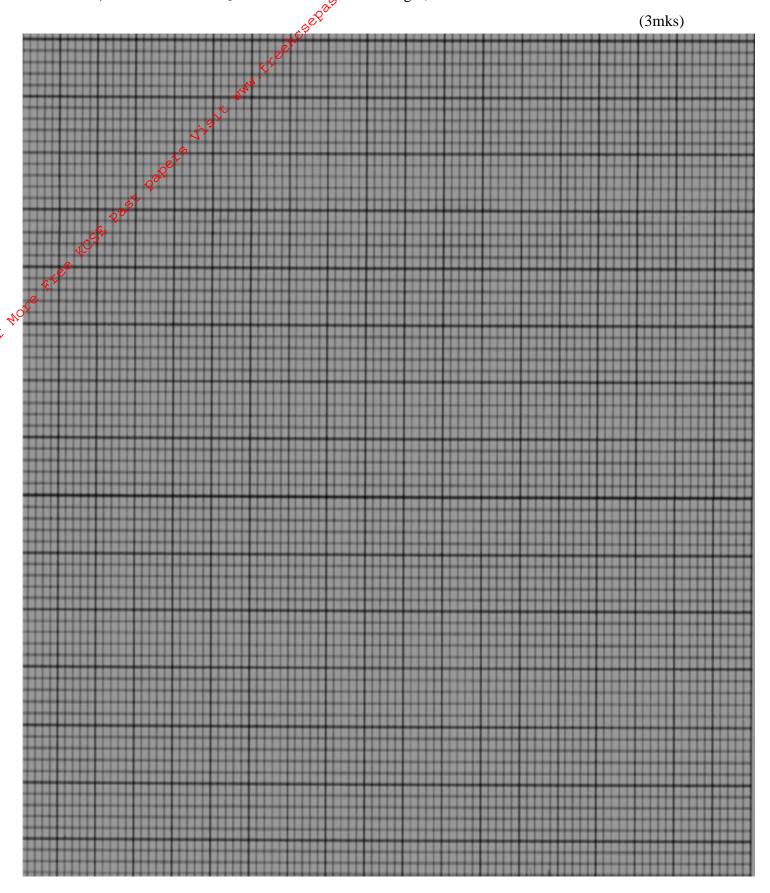
You are provided with the following apparatus

- Concave mirror and a holder
- Meter rule
- Candle (about 7cm)
- White screen
- a) Determine the focal length of the mirror by focusing a distant object

.....(1mk)

b) Arrange the apparatus as shown in figure 1 below

- c) Place the candle at a distance u =22cm from the mirror. Move the screen along the meter rule until a sharp image is formed on the screen. Measure and record the image distance V.
- d) Repeat the experiments for other values of u and record your result in table 1 below...


Object distance u(cm)	22	24	26	28	30	32	34
Image distance V (cm)							
Magnification (v/u)							

(6mks)

2

(5mks)

f) Given that $m = {}^{v}/_{f}-1$. Determine the focal length, f.

Part B

You are provided with the following apparatus

- A voltmeter 0-3 or 0-50
- An ammeter (0-1A)
- 10 resister (fixed)
- A switch
- One dry cell and a cell holder
- Six connecting wires

a) (i) Connect the above apparatus as shown in the circuit diagram below with the switch s open.

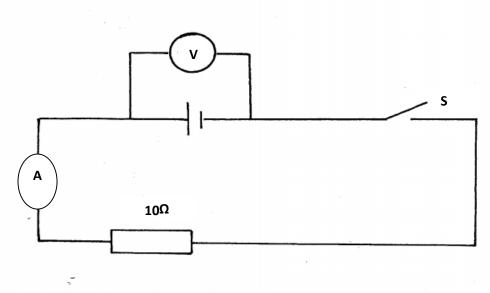


Figure 2

ii) With the switch S open, record E the voltmeter reading (1 mk)

E =

.....

iii) Close the switch and record V, the voltmeter reading and I the ammeter reading

v = (1mk)

.....

4

I

=.....

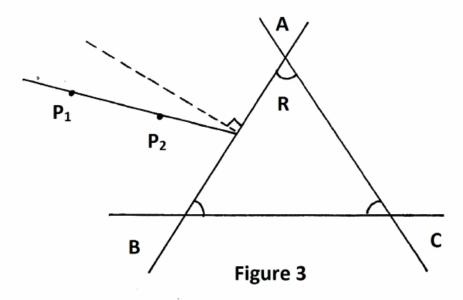
iv) Given that E - V = Ir, Find r the from dry cell.

(2mks)

Queston 2

Part A

For More Free Acet

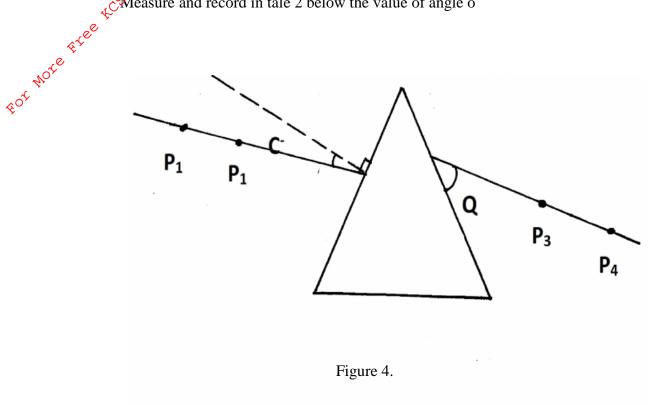

You are provided with the followng

• A triangular prism

- A piece of soft board
- Four (4) optical pins
- A sheet of plain paper
- Thumb pins

Proceed as follows:

a) Place the plain sheet of paper on the soft board. Trace the triangular outline of the prism on the sheet of paper. Remove the prism and use a ruler to extend the three sides of the outline


Use a protractor to measure the refracting angle R of the prism.

R =.....(1mk

- b) On the side AB of the triangular prismoutline,. Draw a normal at a point half-way between A and B. (This normal will be used for the rest of the experiment).
- c) Draw a line at an angle i-30 $^{\circ}$ to the normal. Stick two pins P_1 and P_2 vertically on this line. See figure 3 above.
- d) Place the prism accurately on the outline. By viewing through the prism from side AC. Stick two other pins P₃ and P₄ vertically such that they are in line with the images of pins P_1 and P_2

Remove the prism and the pins. Draw a line joining marks made by P₃ and P4. Extending this line to meet AC. See figure 4 below.

Measure and record in tale 2 below the value of angle o

e) Repeat the procedures in © and (d) above for other values of I shown in table 2. Complete the table.

Table 2

		.6.		 	<u> </u>
Angle of incidence i(degree)		er.			
, , ,		₅ ≻			
Angle ø (degree	ת				
I mgro p (dogroo	200				
Angle f emergence	,é ^v				
Tingle Temergenee	Ç				
$E = 90 - \phi(\deg)$	•				
L = 70- p(deg)					

(6mks)

F) On the grid provided plot the graph of the angle of the emergency E(yaxis) against the

Angle of incidence i

(5mks)

ii) Use the graph to find i(the angle of incidence at which i=E) (1mk)

(The teacher to collect the plane papers used for this experiment showing how the øis got.).

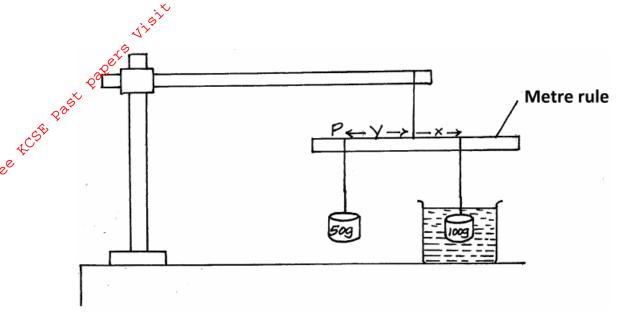
PART B

You are provided with the following

- Meter rule
- Report stand, clamp and boss
- 500ml beaker ¾ full of water
- 100g mas
- 50g mass
- Three pieces of thread

Proceed as follows

a) Balance the meter rule horizontally by suspending it from the stand and clap with one of the threads . Record the balance point G.


$$G = \dots (cm)$$

b) 9i) Suspend the 100g mass from the meter rule at a point x such that x = 10cm from pont G. With 100g mass completely immersed in water in the beaker, hang the 50 g mass from

the meter rule and adjust its position until the system is in equilibrium as shown in the diagram below.

Note the point of suspensuion of the mass (50g)

 $P = \dots \qquad (1mk)$

ii) Find the value of Y.

Y.....(1mk)

(iii) Using the information above, calculate the up thrust on the 100g mass if the density of water is $1000kg/m^3$. (3mks)