Index N	No:
---------	-----

Candidate's Signature Date:

233/1 **CHEMISTRY** PAPER 1 THEORY JULY/AUGUST 2014 **TIME: 2 HOURS**

Name.....

HOMA-BAY SUB-COUNTY JOINT EVALUATION EXAM Kenya Certificate of Secondary Education (K.C.S.F.)

Paper 1 2 Hours

INSTRUCTIONS TO CANDIDATES

- Write your **name** and **index number** in the spaces provided above •
- Sign and write the date of examination in the spaces provided.
- Answer *all* the questions in the spaces provided. •
- Mathematical table and silent electronic calculators may be used. •
- All working **must** be clearly shown where necessary. •

FOR EXAMINERS USE ONLY

Question	Maximum score	Candidate's score
1-30	80	

This paper consists of 11 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

	es. cott	
1.	State two reasons why most apparatus in the laboratory are made of glass (2)	2mks)
		•••••
	······································	
2.	The following is an organic compound represented as $CH_3CH_2COOCH_2CH_3$	
	(i) Name the organic acid and alkanol used in making the compound (2)	2mks)
	J ¹⁹	
	(ii) Name the organic compound and the gas formed when the alkanol in (i) above is reacted with Potassium (d 1mk)
		•••••
3.	Use the information below to answer the question that follows	
\$1.0	$CaO_{(s)} + \frac{1}{2}O_{2(g)}$ $CaO_{(s)}; \Delta H = -635 \text{KJmol}^{-1}$	
or More	$C_{(s)} + O_{2(g)}$ \rightarrow $CO_{2(g)}; \Delta H = -394 \text{KJmol}^-$	
€ ⁰	$Ca_{(s)} + C_{(s)} + \frac{3}{2}O_{2(g)} \longrightarrow CaCO_{3(s)}\Delta H = -1207 \text{ KJmol}^{-1}$	

Calculate the enthalpy change for the reaction

4.	(a) What is the role of the following parts during fractional distillation of a mixture of water and ethanol		
	(i) Fractionating column	(1mk)	
	(ii) Glass beads in the fractionating column	(1mk)	
	(b) State any one application of fractional distillation process	(1mk)	
-			
5.	(i) Iodine changes directly from solid to gas	(1mk)	
	(ii) $\operatorname{Fe}^{2+}_{(aq)}$ changes to $\operatorname{Fe}^{3+}_{(aq)}$	(1mk)	
	(iii) White sugar changes to black solid when mixed with excess concentrat	ted sulphuric (VI) acid (1mk)	
	2		

	COT	
6.	The melting point of phosphorous trichloride s -91°C while that of sodium chloride In terms of structure and bonding. Explain the difference in their melting point	is 801°C. (3mks)
	Le ^{ge}	
	······	
7.	(a) Name a suitable drying agent to be used to dry chlorine gas	(1mk)
		•••••
	(b) Chlorine reacts with red hot powder to give iron (III) chloride but not iron (II) ch Explain?	nloride. (1mk)
	(c) Sodium hydroxide reacts with chlorine to form bleaching powder. Write a balance $\sqrt{2}$ for the reaction	ed equation (1mk)
\$0 ⁵ \$108.	The electronic arrangement of elements are represented by letters A to D are as follo A:2.8.6 B:2.8.2 C:2,8,1 D2:8.8	ws
	(i)Double charged cation	(1mk)
	(ii) A soluble carbonate.	(1mk)
	(b) Which element has the shortest atomic radius?	(1mk)
		••••••
9.	Describe how a sample of Lead (II) chloride can be prepared using the following rea	gents dilute
	nitric (V) acid; dilute hydrochloric acid and lead carbonate	(3mks)

- 10. A radioactive element of mass 50g has a half-life of 10 seconds
 - (a) Sketch a graph of mass against time to show how the element mass varies with time (2mks)

	COT	
	(b) Give one use of radioactive in industries	(1mk)
11.	State and explain one disadvantage of using hard water in boilers	(2mks)
	white est	
12.	Hydrogen sulphide gas was passed through a solution of iron(III) chloride (i) State and explain the observations made	(2mks)
	9 ⁹ ²	
	(ii) Write an ionic equation for the reaction taking place in (i) above	(1mk)
\$ ⁴	e ^e	
Not3.	The apparatus below was set up to show the catalytic oxidation of ammonia. Study to answer the questions that follow $Dry NH_{3(g)}$ Hot nichrome wire	he diagram and
	(i) Write an equation for the reaction that takes place in the gas jar	(1mk)
	(ii) What is the role of hot nichrome wire?	(1mk)
	 (iii) Write the formula of the complex ion formed when excess ammonia gas is pa through a solution containing Zn²⁺ ions. 	ussed (1mk)
14.	A solution of silver nitrate was put in a container made of metal Q for 1 day. Given	that:
	$Q^{2+}_{(aq)+}2e Q_{(s)}:E = 0.130v$	
	Ag $_{(aq)}$ +e \longrightarrow Ag $_{(s)}$:E =+0.80v	(Imlra)
	betermine whether of not a reaction occurred between silver intrate and metal Q	(2111KS)

		con	
15	The table below shows the solubility of sa	It at various temperatures	
15.	site able below shows the solubility of sait a various temperatures		
	0 ^{2⁶}	-	
	Temperature	Solubility g/100g of water	
		36	
	40	30	
	80	25	
	What would happen if x comple of a cotur	20	0
	what would happen if a sample of a satura	aled solution of the sait 40 C is heated to 80 C	<u>،</u> ر
	Explain		(2mks)
	oet		
	2 ^{ot}		
	·····		•••••
16.	The equation given below represents a red	lox reaction	
	$Mg_{(a)} + 2HCl_{(aq)} \longrightarrow Mg_{(a)}$	$Cl_{2(aq)} + H_{2(g)}$	
~~C			
Moret	(i) Write the equation of the reduction pro	cess	(1mk)
\$ ^{°°}	(ii) Which substances is oxidized?		(1mk)
17.	When a current of 1.5 amperes was passed minutes the mass of the cathode increased	l through cell containing M^{2+} ions on metal M	A for 15
	(i) Calculate the quantity of electricity use	ed	(1mk)

(ii) Determined the relative atomic mass of metal M

(2mks)

18.	State any two differences between luminous and non-luminous flames	(2mks)
19.	(a) State Graham's law of diffusion	(1mk)
	(b) The malar masses of real U and V are 160 and 140 respectively. If the rate of	f diffusion of

(b) The molar masses of gas U and V are 16.0 and 44.0 respectively. If the rate of diffusion of U through the porons materials is 12cm³⁻¹. Calculate the rate of diffusion of V through the same materials (2mks)

	ers. con	
20.	The set up below was used to collect a drysample of a gas	
te ft	the first two reasons why the set-up cannot be used to collect carbon (IV) oxide gas	(2mks)
** ^{0°} € ^{°°t} 21.	Dilute sulphuric acid does not react fully with calcium carbonate while dilute hydroc reacts fully with calcium carbonate liberating carbon (IV) oxide. Explain	hloric acid (2mks)
22.	On complete combustion of 0.5g of a hydro carbon; 1.257g of carbon (IV) oxide and water were produced. If the relative molecular mass of the hydrocarbon is 84, determ molecular formula ($C=12, H=1, O=16$)	d 0.514g of nine the (3mks)
21.	The conversion of SO ₂ to SO ₃ in the contact process is shown by the equation $2SO_{2(g)} + O_{2(g)} \longrightarrow 2SO_{3(g)} \Delta H = 197 \text{KJ}$ (a) What would be the effect of? (i) Increasing the concentration of Oxygen	(1mk)
	(ii) Increasing the temperature	(1mk)
	(b) Write an equation for the sulphuric (VI) acid from Oleum	(1mk)
• (

24. Sulphur burns in air to form sulpur (IV) oxide. A simple energy level energy level diagram for the reaction is given below. Study the diagram and answer the questions that follow:

		$\mathbf{F}_{\mathbf{F}} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_$	
		ease Provide the second s	
		(a) What do the following represents $2H_1$ and ΔH_3	(2mks)
	Note Er	(b) Write an expression for ΔH_3 in terms of ΔH_1 and ΔH_2	(1mk)
\$°°	25	Given the reaction below	•••••
	23.	State how the following factors affect the rate of reaction giving explanation	(1mk)
		(a) Using Zinc powder instead of granules	(1mk)
		(b) Heating the reactants	(1mk)
	26.	The flow chart below shows steps used in the extraction of zinc from one of its ores	\$

(a) Name the process that is used in step 2 to concentrated	(1mk)
	•••••

	COR	
	(b) Write an equation for the reaction which takes place in step 3	(1mk)
	20 ²	
	(c) Name one use of zinc other gavanizing	(1mk)
		(11111)
	n ^{inth.}	•••••
27.	The set up below used to obtain a sample of iron	
	Carbon Excess Iron (III) oxide	
	2020	
Ş	Lee LCSE Bas Gas	
or note	(a) Identify the gas collected	(½ mk)
¢ ^O	(b) What observation is made on the excess iron (III) oxide?	(½ mk)
		(2 1)
	(c) Write equations for the two reactions that take place in the combustion tube	(2mKs)
28.	The table below shows PH values of some solutions	
	Solution A B C D	
	PH values 13 7 1 6.5	(1 1)
	(a) what solution reacts vigorously with Magnesium metal?	(1mk)
	(b) Which solution is likely to be that of Lemon juice?	(1mk)
		•••••
	••••••	•••••
	(c) Which solution forms complex ions with zinc (II) oxide?	(1mk)
29.	When a few drops of aqueous ammonia were added to Copper (II) Nitrate solution a	light blue
	precipitate was formed. On addition of more aqueous ammonia a deep blue solution	was formed.
	(a) Light blue precipitate	(1mk)
	(b) Deep blue solution	(1mk)

	CON.
	e ^{ft²}
	² ²
30.	Explain why there is general increase in the first ionization energies of the elements in period 3 of the periodic table from left to right (2mks)
	Papers Visi
\$ ^{re}	e to the second se
FOT NOTE	