		с`
Name		Index No:
233/3 CHEMISTRY PAPER 3 PRACTICAL JULY/AUGUST 2014 TIME: 2 ¼ HOURS	www.freekcsepastec	Candidate's Signature Date:
	×.	

A.

papers visit HOMA-BAY SUB-COUNTY JOINT EVALUATION EXAM For More Free tct

Kenya Certificate of Secondary Education (K.C.S.E.)

233/3 Chemistry Paper 3 $2\frac{1}{4}$ hours

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided. •
- Sign and write the date of examination in the spaces provided. •
- Answer *all* the questions in the spaces provided in the question paper. •
- You are not allowed to start working with the apparatus for the first 15 • minutes of the 2¹/₄ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus you need.
- All working **must** be clearly shown where necessary.
- Mathematical tables and electronic calculators may be used. •

For examiners use only

Question	Maximum Score	Candidate's Score
1	12	
2	7	
3	21	
TOTAL	40	

This paper consists of 4printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

You are provided with: 1.

- 3.0g of dibasic acid H_2X , solid
- Aqueous Sodium hydroxide solution K
- Aqueous hydrochloric, acid containing 7.3g per litre, solution M

You are required to:

Determine the concentration of sodium hydroxide, solution **K** in moles per litre. Work out the concentration of solution W

Procedure I

Fill the burette with solution M. pipette 25 cm^3 of solution K and pour into a conical flask. Add 2 drops of phenolphthalein indicator and titrate against solution M from burette. Repeat two more times and complete table 1

Table 1

	4 ^{CV}	Ι	II	III
مر م	Final burette reading (cm ³)			
\$ Y	Initial burette reading (cm ³)			
MOTE	Volume of solution used (cm ³)			
\$ OF	(a)(i) Work out the average volume	of solution M		

G	ii) Calculate the concentration of solution \mathbf{M} in mole per litre	2mks`)
_ (I	activity calculate the concentration of solution with in more per nuc	ZIIIKS	,

(;;;)	Colculate the	numbor	of moloc	of colution	V	present in one litre of its solution	mk	-)
, III,	Calculate the	number	of moles	of solution	L	present in one nue or its solution	(ZIIIKS	5)

Procedure II

Using a 100ml measuring cylinder, measure 40 cm^3 of distilled water and add the whole of solid W to the water in a measuring cylinder. Shake to dissolve solid W and add more distilled water to make a total volume of 50cm³ of the solution. Transfer the solution into an empty beaker. Measure accurately 25.0cm³ of the solution using a 100ml measuring cylinder and then add distilled water to make 100ml of the solution and label it solution **W**. pipette 25.0cm³ of solution **K** into a conical flask and add two drops of Methyl orange indicator. Titrate against solution W from burette. Repeat two more times and record your results in table II below Table II

	Ι	II	III
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of solution used (cm ³)			

(5mks)

(5mks)

(a) What is the average volume of solution W used?

.....

(b) Calculate the:

- (i) Mole of solution **W** that reacted with solution K(reaction ratio=2:1,2 mole of K react with 1 mole of **W**) (2mks)
- (ii) Mole of solution W in 100cm³ of solution

(2mks)

(iii) Molesper litre of the original solution made when solid **W** was dissolved (2mks)

2. ^eYou are provided with solid **D** weighed exactly of 4.0g

for More

- You are required to determine the solubility of solid **D** at difference temperatures **Procedure**
- (i) Fill a clean burette of distilled water to a boiling tube containing all the solid provide
- (ii) Transfer 4cm³ of distilled water to a boiling tube containing all the solid **D** provided
- (iii) Heat the mixture while stirring with the thermometer to a temperature of about 80°C when the entire solid will have dissolved
- (iv) Allow the solution to cool while stirring with thermometer. Note the temperature at which crystals start to appear and record the temperature in the table below.
- (v) To the same solution, add 2cm³ of distilled water from the burette, heat the mixture while stirring with the thermometer to a temperature of about 80°C when the entire solid will have dissolved.
- (vi) Allow the mixture to cool and record the temperature at which crystals first appear in the table below

(vii) Repeat procedure (v) and (vi) three more times and record the temperature in the table (viii) Complete the table of solubility of solid **D** at different temperatures

Temperature at which	Solubility of solid D in g/100g
crystals first appear (oC)	of water
	Temperature at which crystals first appear (oC)

(b) Hence determine the mass of solid deposited when solution is cooled from $55^{\circ}C$ to $50^{\circ}C$ (1mk)

- (c) Use your graph to determine the temperature at which 80g of solid **D** would dissolve in 100g of water.
- 3. (a) You are provided with solid **N**. Carry out the tests below. Write your observations and inferences in the spaces provided

(i) Heat about one third of solid **N** in a clean dry test-tube. Test the gases produced with both blue and red litmus papers.

Observations	Inferences
	(1mk)
(1mk)	

- (ii) Using a boiling tube, dissolve the rest of solid N in about 10cm3 of distilled water and use the solution for the tests below.
- (I) To about 2cm^3 of the solution, add 5cm3 of solution P (Aqueous sodium carbonate)

Observations viet	Inferences
(1mk) e^{aPerts}	(1mk)

(Ib To 2cm³ of the solution, add about 4cm³ of aqueous ammonia drop wise until in excess

ate fit	Observations	Inferences
FOT NO		
Ŷ	(1mk)	(1mk)

(III) To 2cm³ of the solution, add about 4cm³ of aqueous barium nitrate

Observations	Inferences
(1mk)	(1mk)

(IV) To the mixture obtained in III above, add about 2cm^3 of dilute hydrochloric acid

Observations	Inferences
(1mk)	(1mk)