233/3
CHEMISTRY
PAPER 3
PRACTICAL
JULY/AUGUST 2014
TIME: $21 / 4$ HOURS

Candidate's Signature
Date:

HOMÅ-BAY SUB-COUNTY JOINT EVALUATION EXAM

Kenya Certificate of Secondary Education (K.C.S.E.)

233/3
Chemistry
Paper 3
$21 / 4$ hours

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided.
- Sign and write the date of examination in the spaces provided.
- Answer all the questions in the spaces provided in the question paper.
- You are not allowed to start working with the apparatus for the first 15 minutes of the $21 / 4$ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus you need.
- All working must be clearly shown where necessary.
- Mathematical tables and electronic calculators may be used.

For examiners use only

Question	Maximum Score	Candidate's Score
$\mathbf{1}$	$\mathbf{1 2}$	
2	7	
3	$\mathbf{2 1}$	
TOTAL	$\mathbf{4 0}$	

1. You are provided with:

- 3.0 g of dibasic acid $\mathrm{H}_{2} \mathrm{X}$, solide
- Aqueous Sodium hydroxidecsolution \mathbf{K}
- Aqueous hydrochloric agid containing 7.3 g per litre, solution M

You are required to:
Determine the concentration of sodium hydroxide, solution \mathbf{K} in moles per litre. Work out the concentration of solution \mathbf{W}

Procedure I

Fill the burette $e^{c_{w}^{5}}$ ith solution M. pipette $25 \mathrm{~cm}^{3}$ of solution \mathbf{K} and pour into a conical flask. Add 2 drops of phenolphthalein indicator and titrate against solution M from burette. Repeat two more times and \times complete table 1
Table ${ }^{?}$

近	I	II	III
CFinal burette reading (cm^{3})			
Initial burette reading (cm^{3})			
Volume of solution used (cm^{3})			

(a)(i) Work out the average volume of solution \mathbf{M}
(ii) Calculate the concentration of solution \mathbf{M} in mole per litre
(iii) Calculate the number of moles of solution \mathbf{K} present in one litre of its solution

Procedure II

Using a 100 ml measuring cylinder, measure $40 \mathrm{~cm}^{3}$ of distilled water and add the whole of solid \mathbf{W} to the water in a measuring cylinder. Shake to dissolve solid \mathbf{W} and add more distilled water to make a total volume of $50 \mathrm{~cm}^{3}$ of the solution. Transfer the solution into an empty beaker. Measure accurately $25.0 \mathrm{~cm}^{3}$ of the solution using a 100 ml measuring cylinder and then add distilled water to make 100 ml of the solution and label it solution \mathbf{W}. pipette $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{K} into a conical flask and add two drops of Methyl orange indicator. Titrate against solution W from burette. Repeat two more times and record your results in table II below
Table II

	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution used $\left(\mathrm{cm}^{3}\right)$			

(a) What is the average volume of solution W used?
(b) Calculate the:
(i) Mole of solution \mathbf{W} that reacted with solution K (reaction ratio=2:1,2 mole of K react with 1 mole of \mathbf{W})
(ii) Mole of solution W in $100 \mathrm{~cm}^{3}$ of solution
(iii) Molesper litre of the original solution made when solid \mathbf{W} was dissolved
2. $e^{e} \mathrm{You}$ are provided with solid \mathbf{D} weighed exactly of 4.0 g

You are required to determine the solubility of solid \mathbf{D} at difference temperatures Procedure
(i) Fill a clean burette of distilled water to a boiling tube containing all the solid provide
(ii) Transfer $4 \mathrm{~cm}^{3}$ of distilled water to a boiling tube containing all the solid \mathbf{D} provided
(iii) Heat the mixture while stirring with the thermometer to a temperature of about $80^{\circ} \mathrm{C}$ when the entire solid will have dissolved
(iv) Allow the solution to cool while stirring with thermometer. Note the temperature at which crystals start to appear and record the temperature in the table below.
(v) To the same solution, add $2 \mathrm{~cm}^{3}$ of distilled water from the burette, heat the mixture while stirring with the thermometer to a temperature of about $80^{\circ} \mathrm{C}$ when the entire solid will have dissolved.
(vi) Allow the mixture to cool and record the temperature at which crystals first appear in the table below
(vii) Repeat procedure (v) and (vi) three more times and record the temperature in the table (viii) Complete the table of solubility of solid \mathbf{D} at different temperatures

Volume of water in boiling tube (cm3)	Temperature at which crystals first appear (oC)	Solubility of solid D in g/100g of water
4		
6		
8		
10		
12		

(a) On the grid provided plot a graph of solubility of of

(b) Hence determine the mass of solid deposited when solution is cooled from $55^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}(1 \mathrm{mk})$
(c) Use your graph to determine the temperature at which 80 g of solid \mathbf{D} would dissolve in 100 g of water.
3. (a) You are provided with solid \mathbf{N}. Carry out the tests below. Write your observations and inferences in the spaces provided
(i) Heat about one third of solid \mathbf{N} in a clean dry test-tube. Test the gases produced with both blue and red litmus papers.

Observations	Inferences
$(1 \mathrm{mk})$	$(\mathbf{1 m k})$

(ii) Using a boiling tube, dissolve the rest of ssfid N in about 10 cm 3 of distilled water and use the solution for the tests below.
(I) To about $2 \mathrm{~cm}^{3}$ of the solation, add 5 cm 3 of solution P (Aqueous sodium carbonate)

Observations	Inferences
	(1mk)

(I雄受 $2 \mathrm{~cm}^{3}$ of the solution, add about $4 \mathrm{~cm}^{3}$ of aqueous ammonia drop wise until in excess

Observations	Inferences
$(\mathbf{1 m k})$	$(1 \mathbf{m k})$

(III) To $2 \mathrm{~cm}^{3}$ of the solution, add about $4 \mathrm{~cm}^{3}$ of aqueous barium nitrate

Observations	Inferences
$(1 \mathrm{mk})$	$(1 \mathrm{mk})$

(IV) To the mixture obtained in III above, add about $2 \mathrm{~cm}^{3}$ of dilute hydrochloric acid

Observations	Inferences
$(1 \mathbf{m k})$	$(1 \mathbf{m k})$

