\qquad

HOMA-BAY̆ SUB-COUNTY JOINT EVALUATION EXAM

Kenya Certificate of Secondary Education (K.C.S.E)

121/1
Mathematics
Paper 1
$2^{1} / 2$ hours

INSTRUCTIONS TO THE CANDIDATES

- Write your name and index number in the spaces provided above
- This paper contains two sections; Section 1 and Section 11.
- Answer all the questions in section 1 and only five questions from Section 11
- All workings and answers must be written on the question paper in the spaces provided below each question.
- Marks may be given for correct working even if the answer is wrong.
- Non programmable silent electronic calculators and KNEC Mathematical tables may be used EXCEPT where stated otherwise.
- Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.

FOR EXAMINERS'S USE ONLY

Section 1

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total
Marks																	

Section 1I

Question	17	18	19	20	21	22	23	24	Total
Marks									

GRAND TOTAL

SECTION (50 MARKS)

Answer all quesfions in the spaces provided.

1. Evaluate without using a calculator $\frac{2\left(2 \frac{1}{7}-1 \frac{5}{6}\right) \div \frac{5}{6}}{\frac{2}{3} \text { of } 2 \frac{1}{4}-1 \frac{1}{7}}$
2. Calculate the standard deviation for the data below
3. A straight line L_{1} is perpendicular to another line L_{2} whose equation is $3 y+4 x=12$. If the two lines meet at point P which lines on the x -axis, find:
(i) The co-ordinate of point P
(ii) The equation of line L 1 in the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
4. Mr. Ochuodho who deals in electronics sellsa radio to a customer at Kshs. 1,440 after giving him a discount of 10% but finds that he still makes a 20% profit. Find the profit Mr. Ochuodho would make if he does not give a discount.

A solid block in the shape of a cylinder has a height of 14 cm and weighs 22 kg . If it is made of material of density $5 \mathrm{~g} / \mathrm{cm}^{3}$, find the radius of the cylinder. Take $\pi=\frac{22}{7}$
6. Simplify completely by factorization $\frac{20-45 x^{2}}{6 x^{2}-x-2}$
(3mks)
7. The figure below shows a triangle ABC not dráwn to scale, D is a point on line AC . Given that $\mathrm{BC}=14 \mathrm{~cm}, \mathrm{DC}=7 \mathrm{~cm}$ and $\angle \mathrm{ABC}=\angle \mathrm{BDC} \alpha$ find the length of AD

B
8. Solve the simultaneous inequalities given below and list all the integral values of \mathbf{x}

$$
\frac{3-x}{2} \geq \frac{x+1}{3} \geq \frac{2 x+1}{-3}
$$

9. In the circle drawn to scale below $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are points on its circumference, Chord $\mathrm{BC}=\mathrm{AC}$ and angle $\mathrm{ADC}=138^{\circ}$

Giving reasons calculate the angle ACB
10. The figure below shows a triangular prism $A \mathscr{B}^{C} \mathrm{C} D E F$. $\mathrm{AF}=\mathrm{CD}=\mathrm{BE}=18 \mathrm{~cm}$, The ends ABC and EDF are equilateral triangles of side 8 cm . calculate the angle plane ABD makes with the lie CD (3 mks)

N11. Patricia a student at Ongeti mixed Secondary bought 5 pens and 3 exercise books from Solving supermarket at Kshs. 135, at the same time Jane her class mate also bought 4 pens and 5 exercise books and spent Ksh. 25 more than Patricia. Find the cost of each pen and exercise book (4 mks)
12. Evaluate using mathematical tables only expressing your answer to 4 significant figures
$\frac{4}{0.2356}+(0.9873)^{3}$
13. The diagram below shows the sketch of the curve $y=x^{2}-x-6$

Using the mid-ordinate rule with five rectangles, calculate the area of the shaded region (4 mks)
14. Given that $\sin (3 x-35)^{\circ}-\cos (x+20)^{\circ}=0$ and x is an acute angle, find its value
15. A train of length 80 m crosses a bridge 20 m long in 5 seconds. Calculate the average speed of the train in km / h
16. Mr. Ombogo the principal of Chiga secondare $8^{c^{s^{\circ}}}$ would wish to cover the floor of the new administration block using the square tiles ${ }^{\text {T The }}$ floor is a rectangle of sides 12.8 m by 8.4 m . Find the area of each of the largest tiles which canis be used to fit exactly without breaking

SECTION B^{2} (50 MARKS)

Answer ONLY FIVE questions in this section in the spaces provided

17. Four schools Wiobiero, Asumbi, dyawita and Angiro are such that Wiobiero is 15 km from Asumbi on a bearing of 158°, Nyawitacis to the west of Asumbi and 20km away while An'giro is to the South of Nyawita and on a bearingoof 240° from Wiobiero.
(a) Using a scale of $1: 400 ; 000$ draw a scale diagram showing the relative positions of the four schools.
(b) Using your diagram determine the distance and bearing of Ang'iro from Asumbi
(2mks)
(c) A mast is to be erected so that its equidistant from Asumbi and Nyawita and 20km from Ang'iro on the same diagram show the position of the mast and find its distance from Wiobiero (3mks)
18. The table shows the marks obtained by 40 canfdidates in an examination

Marks	$5-14$	$15-29$	$30-x^{34}$	$35-44$	$45-49$
Frequency	2	12	5^{5}	15	x

(a) Find the value of x
(b) On the grid provided bêlow draw a histogram to represent the data

(c) By drawing a straight line on the graph above determine the median mark
19. A matatu left Oyugis for Homabay town 51 ken away at an average speed of $48 \mathrm{~km} / \mathrm{h}$ at 7.00 am . At 7.30am a Boda boda left Homabay for Oymgis travelling along the same route at an average speed of $60 \mathrm{~km} / \mathrm{h}$
(a) The time when Boda boda meet the matatu
(b) How far from Oyugis did the Boda boda meet the matatu
(c) After meeting the Boda boda the matatu stopped for fifteen minutes before resuming the journey. At what speed should it travel then to reach Homabay at the same time when the Boda boda reached Oyugis
20. A group of people planned to contribute equafly towards a water project which needed Ksh.2,000,000 to complete. However 40 members of the group withdrew from the project. As a result each of the remaining members wrere to contribute Kshs.2,500 more
(a) Find the original number of members in the group
(b) Eerty five percent of the value of the project was funded by constituency
sdevelopment fund(CDF). Calculate the amount of contribution that would be made by each of the remaining members.
(c) Members contribution were in terms of labour provided and money contributed. If the ratio of the value of labour to the money contribution was 6:9. Calculate the total amount of money contributed by the members
21. The figure below shows a prism whose cross length is 20 cm joined to a cylinder of radin 14 cm and height 6 cm to form a the model of a solid

(a) Calculate the cross section area of the pentagon
(b) Calculate the total volume of the solid
(c) The model represents a pillar of total height 5.2 m , calculate the volume of the actual solid in m^{3}
22. The displacement of a particle S metres, t seands after passing a fixed point O is given by $S=3+2 t-5 t^{2}$
Calculate:
(a) The displacement of the particle $2{ }^{2}$ seconds later

(c) The maximum displacement of the particle
(d) The initial velocity of the particle
(e) The acceleration of the particle after t seconds
23. The diagram below shows a circle ABC witho $\mathrm{A}^{5} \mathrm{~B}=12 \mathrm{~cm}, \mathrm{BC}=15 \mathrm{~cm}$, and $\mathrm{AC}=14 \mathrm{~cm}$

Calculate to 4 significance figures:
(a) The angle ACB
(3mks)
(b) The radius of the circle
(c) The area of the shaded region
24. OABC is a trapezium such that the coordinates of $\mathrm{O}, \mathrm{A}, \mathrm{B}$ and C are $(0,0),(2,-1)(4,3)$ and $(0, \mathrm{y})$
(a) Find the value of y
(b) M js 8 the mid-point of AB and N is the mid point of OM . Find in column form (i) The vector AN
(ii) The vector NC
(iii) Vector AC
(1mk)
(c) Hence show that A, N and C are collinear

