|                                                                                                       | e con    |
|-------------------------------------------------------------------------------------------------------|----------|
| Name:                                                                                                 | Index No |
| 232/3<br>PHYSICS PRACTICAL<br>PAPER 3<br>JULY/AUGUST 2014<br>TIME:2 <sup>1</sup> ⁄ <sub>2</sub> HOURS | Date:    |

# papers Visit HOMA BAY SUB-COUNTY JOINT EVALUATION EXAM Kenya Certificate of Secondary Education (K.C.S.E.) For Note Free KCSE

232/3**Physics** Paper 3 2<sup>1</sup>/<sub>2</sub> hours

### **INSTRUCTIONS TO CANDIDATES**

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer ALL the questions in the spaces provided in the question paper.
- (d) You are supposed to spend the first 15 minutes of the  $2\frac{1}{2}$  hours allowed for this paper reading the whole paper carefully before commencing your work.
- (e) Marks are given for a clear record of the observations actually made, their suitability, accuracy and the use made of them.
- (f) Candidates are advised to record their observations as soon as they are made.
- (g) Non-programmable silent electronic calculators may be used.
- (h) This paper consists of 8 printed pages.
- (i) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (j) Candidates should answer the questions in English.

### For Examiner's Use Only

| -                 |   | C | : | d(i) | (ii) | (iii) | ) | (iv) | f | g  |     |       |
|-------------------|---|---|---|------|------|-------|---|------|---|----|-----|-------|
| Maximum Score     |   | 7 | 7 | 4    | 2    | 2     |   | 2    | 1 | 2  | 20  |       |
| Candidate's Score |   |   |   |      |      |       |   |      |   |    |     | Total |
| Question 2        | b | e | f | g    | h    | i     | k | k    | m |    |     | Total |
| Maximum Score     | 1 | 6 | 4 | 2    | 2    | 2     | 1 | 3    | 2 | 20 |     |       |
| Candidate's Score |   |   |   |      |      |       |   |      |   |    | GRA | AND   |
|                   |   |   |   |      |      |       |   |      |   |    | TO  | ГAL   |

This paper consists of 8 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

© H/Bay sub-county form four 2014

**Ouestion** 1

## **QUESTION 1**

You are provided with the following

- . com Triangular card marked PQR •
- Plastic or glass beaker •
- Straight piece of wire •
- Two strips of cellotape •
- Optical pin •
- Set square •
- Millimeter scale •
- Stop watch •

For More Free KC

- You are required also to have a complete mathematical set
- Proceed as follows

(a) Draw the perpendicular line to the base QR and measure and record, the height PM of the <sup>2</sup>triangle (1mk)

PM=h.....



- (b) Using the optical pin provided make holes along the perpendicular line drawn such that the distance y=10mm, 20mm, 30mm, 35mm, 40mm, 50mm, and 55mm from P.
- (c) By using a small piece of cellotape attach both ends of the thin length of wire to the circumference of the beaker with the wire passing through the hole y=10mm and the card hangs freely. Displace the card so that it oscillates about the wire as an axis. See figure below



- (d) Determine the time for 5 complete oscillations and then find the periodic time T. Record the value in the table 1
- (e) Increase y to 20mm and repeat the experiment so as to determine the new value of T. Repeat the procedure in (d) for other values of y and complete the table



(g) From the graph, determine T, the periodic time for which y=1/3h. (2mks)

(h) Hence, calculate the constant K from the formula,

$$t = \sqrt{\frac{33.6}{k}}$$
 where t is the time for 5 complete oscillations when y= 1/3h (3mks)

# **QUESTION 2**

Kcaepastpapets.com You are provided with the following;

- 3 new dry cells (size D)
- A bulb •
- A voltmeter (0-3V or 0-5V) •
- An ammeter (0-1A) •
- A mounted nichrome wate on a millimeter scale •
- A switch •

FOR NOTE Free RCSE

- 7 connecting wire at least 2 with crocodile clips at the ends •
- A micrometer screw gauge (to be shared) ٠
- Proceed as follows;

(a)(i) Set up the circuit as shown in figure below;



(ii) With the crocodile clip A take (L=100cm) take the voltmeter and the ammeter readings.

Record V and I. repeat the readings for L=80,60,40,20, and 0cm respectively. Complete

the table below; Key

| Length L(cm) | 100 | 80 | 60 | 40 | 20 | 0 |
|--------------|-----|----|----|----|----|---|
| Voltage V(v) |     |    |    |    |    |   |
| Current,I(A) |     |    |    |    |    |   |

(6mks)

| (iii) What changes do you observe on the bulb as L decreases from A? |       |  |  |  |  |
|----------------------------------------------------------------------|-------|--|--|--|--|
|                                                                      |       |  |  |  |  |
| (iv) Plot a graph of current I (y-axis)against voltage, V            | (5mks |  |  |  |  |



(v) Determine the slope of your graph at V=2 volts

(3mks)

(b)(i) Given the apparatus in a (i) above, draw a diagram of the circuit you would use to determine the current through the resistance wire AB and the potential differences across it (1mk)

| (ii) Set up the circuit you have drawn. Record the ammeter reading I and the voltmeter re<br>V, when L=100cm | eading<br>(1mk) |
|--------------------------------------------------------------------------------------------------------------|-----------------|
| V=                                                                                                           |                 |
| I=                                                                                                           |                 |
| (iii) Using a micrometer screw gauge, measure the diameter d of the wire                                     | (1mk)           |
| d=mm=m                                                                                                       |                 |
| (iv) Calculate the quantity P given that                                                                     |                 |
| $p = 0.785 \left(\frac{V}{I}\right) \left(\frac{d^2}{L}\right)$ and state its SI units, where L=1m           | (2mks)          |