1. Using equations only differentiate the bleaching effect of Chlorine and SO₂ (2mks) 2. The diagram below shows some steps used in the manufacture of sodium carbonate by the Solvay process. Ammonium Ammonia For Note Free Rosk chloride Concentrated Step I Step II Carbonator sodium chloride Sodium Hydrogen Substance D Carbonate Step III Sodium carbonate (a) Name substance D (1mk) (b) What process takes place in (2mks)Step II.... i. ii. Step III. (c) Write an equation for the reaction taking place in step I. 3. Natural Gallium consists of two isotopes, with atomic masses 69 and 71 in the atomic ratio of 3: 2 respectively. Calculate the relative atomic mass of Gallium.

(2mks)

8. 10 cm³ of gaseous hydrocarbon was mixed with 90 cm³ of oxygen and sparked. The resulting volume at r.t.p was 70 cm³ which was reduced by 30 cm³ on shaking with sodium hydroxide. Find the empirical formula of the hydrocarbon.

(3mks)

Study the diagram below and answer questions that follow.

(a)	Identify solid A.	(1mk)
(b)	Give a reason why warm water is used.	(1mk)
(c)	What observation would be made if hydrogen sulphide gas was bubbled into lead (II) nitrate.	a solution of (1mk).

10.	Some	average	bond	energies	are	giyon	below.

Bond	Energ	y in KJ mol
C - C		348
C - H	ζ.Υe	414
Cl - Cl	". han	243
C C1	-	432
H-Clox	,	340
175		

(3 mks)

C₂H_{6 (g)} P Cl_{2 (g)} — CH₃CH₂Cl_(g) + HCl_(g)

Pack Pack

Rot More Free KC3E Pack

11. The equation below shows a reversible reaction $H_3O^+_{(aq)} + HSO_4^-_{(aq)} \stackrel{\longrightarrow}{\Longleftrightarrow} H_2O_{(l)} + H_2SO_4$

(i)	Identify the acid in the forward reaction and explain.	(2mks)
	983945	

12. (a) Define graham's gas law. (1mk)

(b) Two containers, one with Nitrogen (IV) oxide and other with bromine simultaneously

13. (a) Give one advantage and one dissolvantage of nuclear fusion as a source of ener compared to nuclear fission.	gy (2mks)
A is ix	
(b) List two applications of radioactivity in agriculture	(1mk)
(c) 10g of Chlorine -39 decays to 1.25g in 165 minutes. What is its half life?	(2mks)

14. The diagram below shows industrial manufacture of hydrochloric acid.

20,20	The disconnection of the control of	
e (a)	The reaction between ammonia and oxygen in the presence of the catalyst continuwithout further heating. Explain.	ues (1mk)

(b)) Name catalyst X.	(1mk)
	-	
(c)	Write an equation for the reaction which takes place in the flask.	(1mk)
16. Soi san	me sodium chloride was found to be contaminated with Copper (II) oxide. Describ nple of sodium chloride can be separated from the mixture.	e how a (2mks)

17. Oxygen is obtained on large scale by the fractional distillation of air as shown on the flow chart below.

a) Explain will	y air is considered as a mixture	(1mk)

b) Identify the substance that is removed at the filtration stage (

c) Explain why Carbon (IV) oxide and water are removed before liquefaction of air	(lmk)

	€
d) Identify the component that is collected at -186°C	(1mk)

18. Study the table below and answer the questions that follow:-

Substance		A	В	C	D	E	F
Melting Point	(°C)	801	113 OR 119	-39	5	-101	1356
Boiling point	(°C)	1410	445	457	54	-36	2860
Electrical	Solid	Poor	Poor	Good	Poor	Poor	Poor
Conductivity	liquid	Good	Poor	Good	Poor	Poor	Poor

Identify with reasons the substance of that:

(i) Have a metallic structure, compared to the substance of th (2mks) (ii) Have a molecular structure (2mks)......% Suggest a reason why substance B has two melting points (1mk)(iv) Substances A and C conduct electric current in the liquid state. State how the two substances differ as conductors of electric current (2mks) 19. Describe how you can distinguish a solution of sodium sulphite from a solution of sodium sulphate in the laboratory. 20. Sodium Hydrogen Carbonate was heated strongly in the laboratory by a student. (a) Write a balanced chemical equation for the above equation. (1mk)

(1mk)

(b) Using an equation show how sodium carbonate is used to soften hard water.