NAME	con	INDEX NO
SCHOOL	- Colored	CANDIDATE'S SIGNATURE
	eteekcheRast*	DATE
	Krejko	
CHEMISTRY (THEORY)	· ·	
PAPER 2 JULY/AUGUST 2014 TIME: 2 HOURS		
TIME: 2 HOURS		

KURIA WEST SUB-COUNTY JOINT EXAMINATION - 2014

Kenya Certificate of Secondary Education
CHEMISTRY
PAPER 2
(THEORY)
TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- Write your **name** and **index number** in the spaces provided **above**.
- **Sign** and write the **date** of examination in the spaces provided **above**.
- Answer **all** the questions in the spaces provided.
- Mathematics tables and electronic calculators may be used.
- All working **mus**t be clearly shown where necessary.

FOR EXAMINER'S USE ONLY:

Question	Maximum Score	Candidate's Score
1	12	
2	12	
3	12	
4	10	
5	11	
6	13	
7	10	
Total Score	80	

This paper consists of 12 printed pages.

Candidates should check to ascertain that all the pages are printed as indicated and that no questions are missing.

Chemistry Paper 2 Turnover

1. (a) The table **below** shows the ions of elements **W**, **X**, **Y**, **Z** and their electron arrangement. The letters do not represent the actual symbols of the element.

Ion	Electron configuration
W ⁻	2, 8, 8
X^{2^+}	2, 8, 8
Y^{3^+}	2, 8 5 6
Z^{2}	2,8.

(i) Which two elements belong to the same period? Give a reason. (2mks)

For More Free Rest past page

···	-			0.1					1 0	
(ii)	ln i	which	group	of the	periodic	table	does	Υb	elong?	

(1mk)

(1mk)

(iv) What type of bond is formed between
$$\boldsymbol{W}$$
 and \boldsymbol{X} . Explain.

(2mks)

(1mk)

(ii) Draw a dot (\bullet) cross (X) diagram to show bonding in the hydroxonium. H_3O^+ ion (H = 1, O = 8). (2mks)

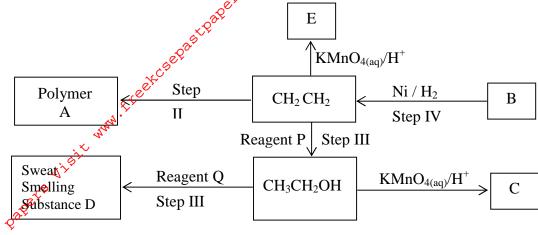
	*Off
(c)	Aluminium chloride and sodium chloride are both chlorides of period 3 elements
	Use this information to explain the following observations.
	I A solution of AlCl ₃ in water turns blue litmus paper red while that of sodi

	A solution of AlCl ₃ in water turns blue litmus paper red while that of sodium	l
	chloride does hot. (1	l½mks)
	chloride does hot. (1	
	£ te	
	The melting point of sodium chloride (801°C) is higher than that of AlCl ₃ (1) (1) e standard electrode potentials for elements A, B, C, D and E given below to a estions that follow. The letters do not represent the actual symbols of the elements A, B, C, D and E given below to a strip the standard electrode potentials for elements A, B, C, D and E given below to a strip the strip that the s	
	Jipo	
II	The melting point of sodium chloride (801°C) is higher than that of AlCl ₃ (19)	80°C).
20°	(1	1½mks)
.x.		
O O O O O O O O O O O O O O O O O O O		
c. v		
₹ ^C S		
e		
₹ *		
10,00 Handle	e standard alastro de restantiale for alemente A. D. C. D. and E. aiven helevy to	
Z. (a) Use the	standard electrode potentials for elements A, B, C, D and E given below to a	answer
€° the que	stions that follow. The letters do not represent the actual symbols of the elen	nems.
	E (volts)	

- Which element is likely to be hydrogen? Give a reason for your answer. (i) (2mks)
- (ii) Identify the strongest reducing agent. (1mk)
- (iii) In the space provided draw a labeled diagram of the electrochemical cell that would be obtained when half cells of element B and D are combined. (3mks)

(iv)	Calculate the E value of the electrochemical cell constructed in (iii) above. (2mks)
	ape ^t .
	

- During the electrolysis of copper (II) sulphate solution using copper electrodes, a current of (b) (i) Write the equation of the reaction occurring at the anode. 0.2A was passed through the cell for 5 hours.


(1mk)

Determine the change in mass of the cathode which occurred as a result of the electrolysis process. (Cu = 64, IF = 96500C). (3mks)

- 3. A hydrocarbon contains 85% carbon. Its molecular mass is 68g. (a)
 - Determine its empirical and molecular formula. (C = 12, H = 1). (2mks)

		of.	
(ii) Draw two posit	tional isomers of the hydrocarbon.	(1mk)
wote firee to the parting of the par	papers i) Write an equation the products for Equation.	cional isomers of the hydrocarbon. The reaction between one of the isomers with rmed.	chlorine and name (2mks)
(b) In	an experiment an org	ganic compound was reacted with absolute ethanol is	in the presence of
	oncentrated sulphuric H ₃ CH ₂ CH ₂ COOCH	(VI) acid to form a compound whose formula is	
(i)		The type of reaction that took place.	(½mk)
	II ′	The name of the organic compounds to which the co	ompound belonged
			, ,
(ii) Write the struct above experime	tural formula and give the systematic name of the acent.	id used in the (1mk)

(c) Study the flow diagram **below** and answer the questions that follow.

Identify the following compounds.

B ______

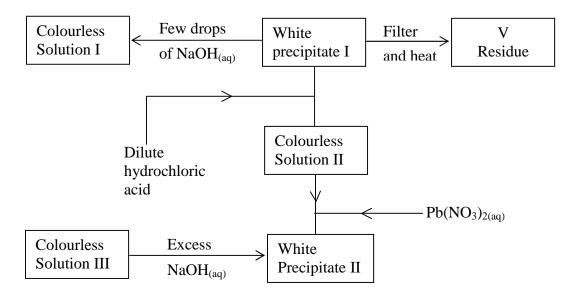
C ____

B ______ (½mk)

C______(½mk)

A ______(½mk)

(ii) Name the process in steps.


I______(½mk)

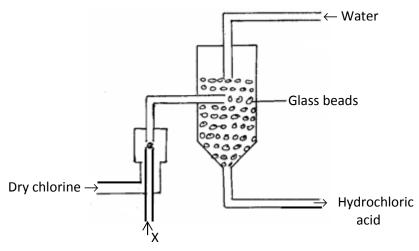
(iii) Reagent

P______(\frac{1}{2}mk)

 \mathbf{Q} (½mk)

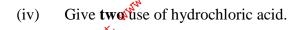
4. (a) Study the flow chart **below** and answer the questions that follow.

Residue V was yellow when hot and white when cold.


c.
fy

Write an ionic equation for the reaction of solution II with $Pb(NO_3)_{2(aq)}$. (1mk)

For More Free Acts Pastii) Write observations that would be made when ammonia solution is added drop wise till in excess to the colourless solution II. (1mk)


> (b) The diagram **below** represents a set-up for large scale manufacture of hydrochloric acid. Study it and answer the questions that follow:

(i) Name substance X. (1mk)

(ii) What is the purpose of glass beads? (1mk)

(iii)	Give one source of substance X used in the above process.	(1mk)
	- Company of the comp	

(2mks)

Use the information below to answer the questions that follow.

Use the information below to answer the questions that follow.

$$Ca_{(s)} + \frac{1}{2}O_{2(g)} \rightarrow CaO_{(s)} \quad \Delta H = -635 \text{ KJ mol}^{-1}$$

$$Ca_{(s)} + O_{2(g)} \rightarrow CaO_{2(g)} \quad \Delta H = -394 \text{ KJ mol}^{-1}$$

$$Ca_{(s)} + e_{(s)} + \frac{3}{2}O_{2(g)} \rightarrow CaCO_{3(s)} \quad \Delta H = -1207 \text{ KJ mol}^{-1}$$

Calculate the enthalpy change for the reaction.

$$CaO_{(S)} + CO_{2(g)} \rightarrow CaCO_{3(S)}$$
 (3mks)

State **one** factor that should be considered when choosing a fuel for cooking. (b) (1mk)

The following data was obtained during an experiment to determine the molar heat of (c) combustion of ethanol.

> Volume of water used $= 500 \text{cm}^3$ $=25^{\circ}C$ Initial temperature of water $= 44.5^{\circ}C$ Final temperature of water Mass of ethanol + lamp before burning = 121.5gMass of ethanol + lamp after burning = 120.0g

Cal	(11)	lata	th
V (4)	CH	laic.	111

(i) heat evolved during the experiment (density of water = $1g/cm^3$, specific heat capacity of water = $4.2Jg^{-1}K^1$). (1mk)

ann treetres

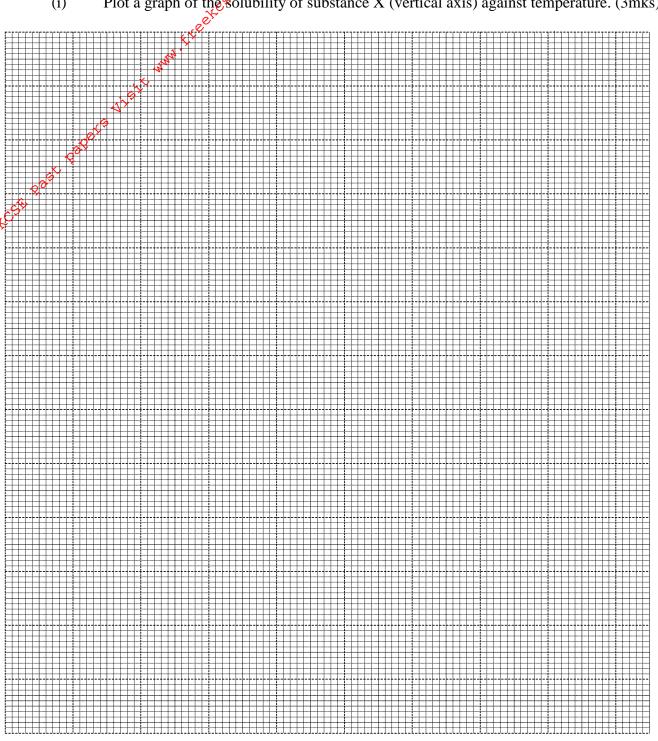
(ii) mother heat of combustion of ethanol (C = 12, O = 16, H = 1).

(2mks)

(d) Write the thermo equation for the complete combustion of ethanol. (1mk)

(e) At 298K and one atmosphere pressure, graphite changes into diamond according to the equation.

$$C_{(graphite)} \rightarrow C_{(diamond)} \qquad \Delta H = +2.9 \text{ KJ/mol}$$


In the space provided, sketch a simple energy level diagram for the above change. (2mks)

6. (a) At 25°C 50g of substance X were added to 100g of water to make a saturated solution. What is meant a saturated solution? (1mk)

(b) The table **below** gives the solubilities of substance X at different temperatures.

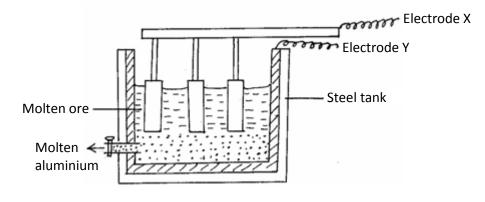
Temperature °C	14	² 24	33	40	46	52
Solubility g/100g H ₂ O	24¢	36	50	62	72	90

(i) Plot a graph of the solubility of substance X (vertical axis) against temperature. (3mks)

(ii) Using the graph.

I	determine the solubility of substance X at 20°C.	(2mks)

II	determine the mass of substance X that remained undissolved given that 90g of		
	substance X were added to 100cm³ of water and warmed to 35°C.	(2mks)	
	as the second se		
	~c.\$e.\$p.		
	, steet		
	·×		


Calculate the molarity of the solution at 30°C. (Relative formula mass of X = 122.5). (3mks)

A paper pape In an experiment, soap solution was added to three separate samples of water. The table below shows volumes of soap solution required is form lather with 1000cm³ of each sample of water before and after boiling.

	Sample		
Volume of soap before water is boiled (cm³)	25.0	5.0	10.0
Volume of soap after water is boiled (cm ³	25.0	5.0	5.0

Explain t	ne change in volume of soap solution used in sample III.	

7. Aluminium is extracted using the electrolytic cell represented by the diagram below.

	(a)	Why is aluminium extracted by electrolytic method?	(1mk)
		agit tag	
		eètctet	
	(b)	Name the electrodes labeled.	
	(-)	X	_ (½mk)
		Ye ^{z,†}	_ (½mk)
	(c) 25 25	The chief ore from which aluminium is extracted is bauxite. (i) Name two main impurities present in bauxite.	(2mks)
ite fitee	,		
ore		(ii) Aluminium oxide is the main component in bauxite with a melting point but electrolysis of molten aluminium oxide is carried out at 800°C. Expis achieved.	
	(d)	Write the equations for the reaction taking place at the anode.	(1mk)
	(e)	One of the electrodes is replaced periodically. Which one and why?	(2mks)
	(f)	Duralumin (an alloy of copper, aluminium and magnesium) is preferred to pure in the construction of aeroplane bodies. Give one property of duralumin that is	