SCHOOL
\qquad

233/3
CHEMISTRY
(PRACICAL)
PAPER 3
JULY/AUGUST 2014
TIME: $\mathbf{2 ¹}^{1 / 4}$ HOURS

KURIA WEST SUB-COUNTY JOINT EXAMINATION - 2014

Kefilya Certificate of Secondary Education
CHEMISTRY
PAPER 3
(PRACTICAL)
TIME: $\mathbf{2}^{1 ⁄ 1} 4$ HOURS

INSTRUCTIONS TO CANDIDATES:

(a) Write your name and number in the spaces provided above.
(b) Sign and write the date of examination in the spaces provided above.
(c) Answer $\boldsymbol{A L L}$ the questions in the spaces provided.
(d) Mathematics tables and electronic calculators may be used.
(e) All working must be clearly shown where necessary.
(f) The first 15 minutes should be used to go through the questions.

FOR EXAMINER'S USE ONLY:

Question	Maximum Score	Candidate's Score
1	12	
2	15	
3	13	
Total Score	40	

1. You are provided with:

- Solution B_{1} containing 3.15 g of a dibasic acid represented as $\mathrm{H}_{2} \mathrm{~A}$ dissolved to make $250 \mathrm{~cm}^{3}$ of a solution.
- \quad Solution $\mathrm{B}_{2}, 0.2 \mathrm{M}$ sodium hydroxide.
- Phenolphthalein indicator.

You are required to:
(i) Titrate solution B_{1} agaiúnst solution B_{2}.
(ii) Determine the moleĉular mass of the organic acid.

Procedure:
Fill the burette with sodium B_{1}.
Add 1 to 2 drops of phenolphthalein indicator into the solution in the conical flask and then titrate with solution B_{1}.
Pipette $25.0 \mathrm{~cm}^{3}$ of solution B_{2} sodium hydroxide into a conical flask.
Record your results in the table 1 below.

	1	2	3
TABLE 1			
Volume of solution $\mathrm{B}_{1}\left(\mathrm{~cm}^{3}\right)$			

(i) Calculate the average volume of solution B_{1} used. (Show your working clearly).
(ii) Write an equation for the reaction between the acid $\mathrm{H}_{2} \mathrm{~A}$ and solution hydroxide.
(1mk)
(c) Calculate:-
(i) The concentration of the acid solution B_{1} in moles per litre.
(ii) The concentration of acid B_{1} in grams per litre.
(d) Given that the formula of the acid is $\mathrm{H}_{2} \mathrm{~A} \cdot \mathrm{XH}_{2} \mathrm{O}$. Calculate the value of X .

2.

You are provided with:-

- Acid D, labeled solution D.
- 2.0 M sodium hydroxide, solution G.

You are required to:-
Determine the:-
(i) reaction ratio between sodium hydroxide and acid $\mathrm{D} /$
(ii) molar heat of neutralization of acid D with the alkali sodium hydroxide (solution G).

Procedure:
Fill a clean burette with solution D. Place $5 \mathrm{~cm}^{3}$ of solution D into a 100 ml beaker. Measure the initial temperature of solution D in the beaker and record it in table 2. Using a 10 ml or a 50 ml measuring cylinder, measure $25 \mathrm{~cm}^{3}$ of solution G . Add it to solution D in the beaker and immediately stir the mixture gently with the thermometer. Record the maximum temperature reached in table 2. Repeat the experiment with other sets of volumes of solution D and G and complete the table

TABLE 2

Volume of solution D $\left(\mathrm{cm}^{3}\right)$	5	9	13	17	21	25
Volume of solution G $\left(\mathrm{cm}^{3}\right)$	25	21	17	13	9	5
Maximum temperature $\left({ }^{\circ} \mathrm{C}\right)$						
Initial temperature $\left({ }^{\circ} \mathrm{C}\right)$						
Change in temperature, $\Delta \mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$						

(a) On the grid provided, plot a graph of $\Delta \mathrm{T}$ (vertical axis) against the volume of solution D.

(b) From the graph, determine the volume of solution D which gave the maximum change.
(c) Determine the volume of G that reacted with the volume of solution D in (b) above.
(d) Calculate the:-
(i) reacting ratio between sodium hydroxide and acid D .
(Assumé that the volume ratio is the same as the mole ratio).
(ii) the number of moles of sodium hydroxide, solution G used.
(iii) the molar heat of neutralization between sodium hydroxide and the acid.
(Density of the solution $=1 \mathrm{gcm}^{3}$)
sp. ht. capacity $\quad=4.2 \mathrm{kJkg}^{11}{ }^{1}$)
3. (a) You are provided with solution Q .
(i) To about $1 \mathrm{~cm}^{3}$ of Q add drops of 2.0 M sodium hydroxides.

Observation		Inferences
	$(1 / 2 \mathrm{mk})$	

(ii) Dip a metallic spatula in solution Q and burn it directly on a non-luminous flame.

| Observation | Inferences | |
| :--- | ---: | ---: | :--- |
| | | |
| | $(1 / 2 \mathrm{mk})$ | $(1 / 2 \mathrm{mk})$ |

(iii) To about $1 \mathrm{~cm}^{3}$ of Q add three drops of 1.0 M barium nitrate solution provided and keep the mixture.
\qquad
(iv) To the onixixture in (iii) above add a few drops of 2.0 M hydrochloric acid drop wisse till in excess.

(v) To about $1 \mathrm{~cm}^{3}$ of Q add three drops of acidified potassium dichromate (VI) solution.

Observation		Inferences	
	$(1 / 2 \mathrm{mk})$		$(1 / 2 \mathrm{mk})$

(b) (i) To about $2 \mathrm{~cm}^{3}$ of solution B_{1} in a test tube add 2-3 drops of bromine water.

Observation	Inferences	
	$(1 \mathrm{mk})$	$(1 \mathrm{mk})$

(ii) To about $2 \mathrm{~cm}^{3}$ of solution B_{1} in a test tube add 2-3 drops of acidified of potassium manganate (VII) solution.

| Observation | Inferences | |
| :--- | :--- | :--- | :--- |
| | | |
| | $(1 \mathrm{mk})$ | $(1 \mathrm{mk})$ |

(iii) To the remaining solution B_{1} test with both blue and red litmus.

Observation	Inferences		
	$(1 \mathrm{mk})$		$(1 \mathrm{mk})$

