\qquad
\qquad Class: \qquad

Candidate's Signature:

\qquad

121/1

MATHEMATICS ALT A

Paper 1
July 2014
$21 / 2$ hours

KAKAMEGA× COUNTY JOINT EVALUATION TEST-2014
Kenya Certificate of Secondary Education (K.C.S.E.)
MATHE MATICS ALT A
Papert 1
$21 / 22$ hours

Instructions to candidates

(a) Write your name and index number in the spaces provided above.
(b) Sign in the spaces provided above.
(c) This paper consists of TWO sections: Section I and Section II.
(d) Answer ALL the questions in Section I and only five from Section II.
(e) All answers and working must be written on the question paper in the spaces provided below each question.
(f) Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
(g) Marks may be given for correct working even if the answer is wrong.
(h) Non - programmable silent electronic calculators and KNEC Mathematical tables may be used except where stated otherwise.
(i) This paper consists of 16 printed pages.
(j) Candidates should check the question papers to ascertain that all the pages are printed as indicated and that no questions are missing.

For Examiner's Use Only

Section I

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	Total

Section II

17	18	19	20	21	22	23	24	Total

Answer all the qetestions in this section in the spaces provided.

1. Use tables of reciprocal ons to evaluate $\frac{1}{0.325}$, hence evaluate ;

$$
\frac{\sqrt[3]{0.000125}}{0.325}
$$

2. Solve the equation $3 x^{2}+4 x=2$ giving the roots correct to two decimal places.
(4 marks)
3. The straight line through the points $\mathrm{D}(6,3)$ and $\mathrm{E}(3,-2)$ meets the y-axis at the point F . Determine the coordinates of F.
4. Using the grid provided below, draw ands shade the unwanted regions to show the region satisfied by R given the following inequalities; $x^{2} q^{2} x<5, y-x \leq 1$ and $x+5 y>5$

5. Given that $a=-2, b=-1$ and $c=3$, evaluate $\frac{2(a+c)^{2}-(a-b)(b-c)-2 c}{3(a+b)-2(b-c)}$ (3 marks)
6. A key cutting factory starts cutting keysat the rate of 500 per hour. The rate of production reduces by 10% every 2 hours. Calculate the numbers of keys cut in the first 6 hours.

 weminder and the girl got the rest. Find the percentage share of the younger boy to the girl's share.
(3 marks)
8. Annette has some money in two denominations only. Fifty shilling notes and twenty shilling coins. She has three times as many fifty shilling notes as twenty shilling coins. If altogether she has sh. 3400, find the number of fifty shilling notes and 20 shilling coins.
9. The figure below shows a rhombus $\mathrm{PQR} \Phi^{\delta}$ with $\mathrm{PQ}=9 \mathrm{~cm}$ and $\angle \mathrm{SPQ}=60^{\circ}$. SXQ is a circular arc; centre P.

Calcyfate the area of the shaded region correct to two decimal places. $\left(\right.$ Take $\left.\pi=\frac{22}{7}\right)$
10. A particle accelerates uniformly from rest and attains a maximum velocity of $30 \mathrm{~m} / \mathrm{s}$ after 16 seconds. It travels at this constant velocity for the next 20 seconds before decelerating to rest after another 8 seconds. Calculate the total distance covered by the car.
11. The figure below shows a right angled triangle with $\mathrm{AB}=12 \mathrm{~cm}$. ED is parallel to $\mathrm{BA}, \mathrm{CE}=6.3 \mathrm{~cm}$ and $E D=8 \mathrm{~cm}$.

Given that the area of $\mathrm{EBAD}=31.5 \mathrm{~cm}^{2}$, find the length of BC
(4 marks)
12. Find the value of x in the equation $5^{\frac{x}{4}}=\frac{1}{25}$
(3 marks)
13. Given that $\tan x=2.4$, evaluate without use of tables and calculators, $\sin x-\cos x$ in the form of $\frac{a}{b}$ where a and b are integers.
14. The difference between the interior andexterior angles at each vertex of a regular polygon is 162°. Find the number of sides of the polygen.
15. A number n is such that when it is divided by 27 and 30 or 45 , the remainder is always 3 . Find the smallest value of n.
(2 marks)
16. The figure below shows a regular tetraheedron PQRS of edges 4 cm .

Draw its net and measure the length of the straight path of PS through the midpoint T over the edge QR.

SEETION II (50marks)

Answer only five duestions in this section in the spaces provided.
17. Three business partners, Bela Joan and Trinity contributed Kshs. 112, 000, Kshs. 128, 000 and Kshs. 210, 000 respectively to stârt a business. They agreed to share their profits as follows:
30% to be shared equally
30% to be shaređ in the ratio of their contributions
40% to be refained for the running of the business.
If at the end $\boldsymbol{o}^{\mathbf{P}}$ the year, the business realised a profit of Kshs. 1. 35million
Calculaters x^{x}
(a) the âmount of money retained for running the business at the end of the year. (1mark)
(b) the difference between the amounts received by Trinity and Bela.
(6marks)
(c) Express Joan's share as percentage of the total amount of money shared between the three partners.
(3 marks)
18. In the figure below, O_{1} and O_{2} are the cemtres of the circles whose radii are 4 cm and 7 cm respectively. The circles intersect at and B and angle $\mathrm{AO}_{1} \mathrm{O}_{2}=60^{\circ}$

Find คy calculation; take $\pi=3.142$

(a) The angle $\mathrm{AO}_{2} \mathrm{O}_{1}$

(1 marks
(b) The area of the quadrilateral $\mathrm{AO}_{1} \mathrm{BO}_{2}$
(c) The shaded area
19. The figure below shows a plan of a roof a rectangular base $A B C D . A B=20 \mathrm{~cm}$ and $B C=12 \mathrm{~cm}$. the ridge $\mathrm{PQ}=8 \mathrm{~cm}$ and is centrally praced. The faces ADP and BCQ are equilateral triangles. N is the

Calcorlate:
e(a) The length of PN
(b) The altitude of P above the base.
(c) The angle between the planes ABQP and ABCD .
(d) The obtuse angle between the lines PQ and DB
20. Complete the table below for the functienf $y=x^{3}+6 x^{2}+8 x$ for $-5 \leq x \leq 1$

x	-5	-4	-3	-2	-1	0	1
x^{3}	-125	-64	$4^{5}{ }^{8}$		-1	0	1
$6 x^{2}$		** 54			6	0	
$8 x$	-40	x	-24	-16		0	8
y			3			0	15

(a) Draw the graph of the function $y=x^{3}+6 x^{2}+8 x$ for $-5 \leq x \leq 1$
(3 marks)
(Use a scape of 1 cm to represent 1 unit on the x axis. 1 cm to represent 5 units on the y -axis)

(b) Hence use your graph to estimate the roots of the equation

$$
x^{3}+5 x^{2}+4 x=-x^{2}-3 x-1
$$

(4 marks)
21. Three islands P, Q, R and S are on at ocean such that island Q is 400 kmon a bearing of 030° from island P. Island R is 520 kmand on a beéring of 120° from island Q. A port S is sighted 750 km due south of island Q .
(a) Taking a scale of 1 cm to represent 100 km , give a scale drawing showing the relative positions of P, Q, R and S.
(4 marks)

Use the scale drawing to
(b) Find the bearing of:
(i) Island R from island P
(ii) Port S from island R
(c) Find the distance between island P and R
(d) A warship T is such that it is equidistant from the islands P, S and R . By construction locate the position of T
22. Two vertical columns A and B of height σ and $2 h$ respectively stand on level ground and are 100 m apart. Two points P and Q are d metres apart, the elevation of the top of A and B from point P are 35° and 28° respectively and the elevafion of top of B from point Q is 75°

(a) The vertical heights of the two columns in metres
(7 marks)
(b) The distance PQ in metres
23. In the figure below, E is the midpoint of $2 \mathrm{AB}, \mathrm{OD}: \mathrm{DB}=2: 3$ and F is the point of intersection of OE and $A D$

Given thatic $\mathbf{O A}=\mathbf{a}$ and $\mathbf{O B}=\mathbf{b}$,
(a) Express in terms of \mathbf{a} and \mathbf{b}
(i) AD
(ii) $\mathbf{O E}$
(b) Given further that $\mathbf{A F}=s \mathbf{A D}$ and $\mathbf{O F}=t \mathbf{O E}$, find the values of s and t
(c) Show that E, F and O are collinear
24. A swimming pool is 20 m by 12 m and itsopes gently from a depth of 1 m at the shallow end to a depth of 3 m at the deep end.
(a) Calculate the volume of water dif the swimming pool (in m^{3}) when it is full. (3marks)

(b) If the swimming pool is to be drained by a pump which removes water at the rate of $2.5 \mathrm{~m}^{3}$ per minute, how long will it take this pump to drain the swimming pool if it was full? (3marks)
(c) If the sides of the swimming pool and its floor are to be covered with square tiles of side 20 cm , find to the nearest 100 the number of tiles required.

