	10th
NAME	e ^e INDEX NO
STREAM	ADM. NO
Cterre Cterre	
232/3 teet	
NAMESTREAMSTREAM	
PRACTICAL	
TIME: 2HRS 30 MINUTES	

KAKAMÉGA COUNTY JOINT EVALUATION EAMINATION-2014

KENYA CERTIFICATE OF SECONDARY EXAMINATIONS

INSTRUCTIONS

\$0[°]

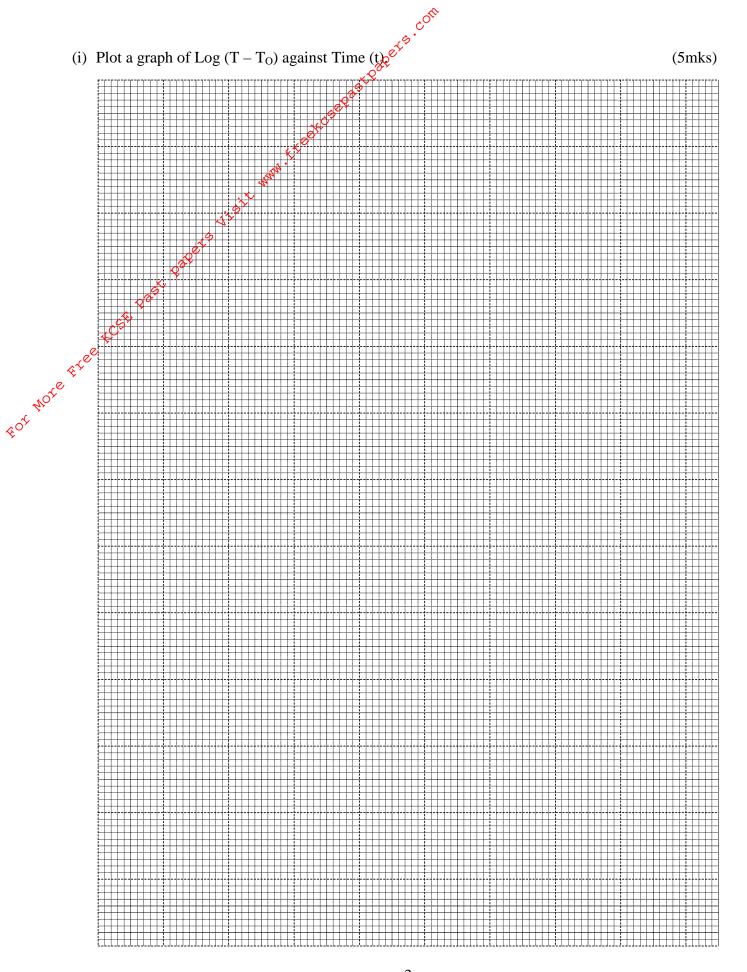
- Write you name, index number, admission number and your class.
- Use the first 15 minutes of 21/2 hrs to study the questions properly.
- answer all questions

FOR EXAMINERS USE ONLY

QUESTION	MAX. SCORE	CAND. SCORE
1	20	
2	20	
	40	

QUESTION ONE

Set up the apparatus as shown in the diagram below.


Measure 100cm³ of water and pour it into the beaker. Take the initial temperature of the water.

Τ₀..... (1mk).

Now heat the water to a temperature of 90 $^{\circ}$ C. Switch off the gas tap and place a thermometer into the beaker and start the stop watch when the temperature is 65 $^{\circ}$ C. Take the temperature T $^{\circ}$ C of water every two minutes. Record your results in the table below.

Time (t) (min)	2	4	6	8	10	12	14
(min)							
Temperature $(T)^{0}C$							
$(T)^{O}C$							
$(T - T_0)^0$							
$Log(T - T_0)$							

(7mks)

3 ©2014 KAKAMEGA COUNTY JOINT ACADEMIC COMMITTEE PHYSICS PAPER 3

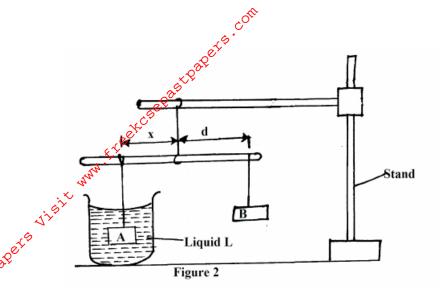
COR	
(ii) Find the value K of log(T – T ₀) when $t = 0$ $e^{c^{0}t^{2}}$	(2mks)
- Carter and a second	
ere	
Determine the antilog of K.	(2mks)
apero.	
(iii)Calculate the temperature of the sorounding T_R using the expression Antilog $\mathcal{K} = 65 - T_R$.	(3mks)
€C ⁵	
* ^{ree}	
$\mathbf{O}^{\mathbf{C}^{e}} \qquad \mathbf{O}^{\mathbf{UESTION TWO}}$ $\mathbf{O}^{\mathbf{C}^{e}} \qquad \text{This question has two parts A and B. answer both parts.}$	
60° This question has two parts A and B. answer both parts.	

QUESTION TWO

PART A

You are provided with the following:

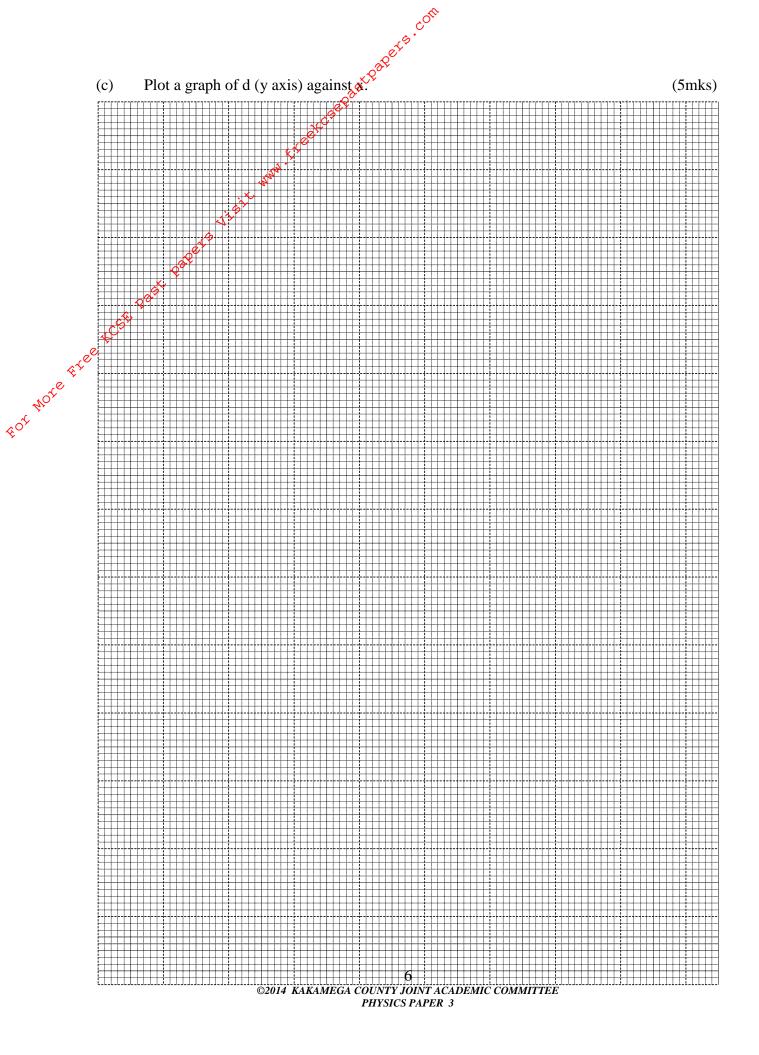
- A meter rule
- Two identical 100g masses -
- About 200ml of liquid L in 250ml beaker -
- Three pieces of thread, each about half metre long. -
- Stand with clamps -
- Tissue paper. -


Proceed as follows:

(a) Using a stand and one piece of thread, suspend the metre rule in air such that it balances horizontally. Record the position of the centre of gravity. G.

G = _____ mm

NOTE: The metre rule should remain suspended at this point through out the experiment.

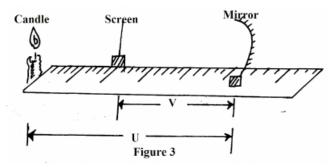

(b) Set up the apparatus as in figure 2 below.

Suspend the mass A at a distance x = 50mm. adjust the position of mass B until it balances mass A immersed in liquid L.

Y	1					
Record the	e distance d, of	mass B from th	ne pivot.			
Repeat the	e same process	for other values	s of x in table 2	below and com	plete the table.	
x(mm)	50	100	150	200	250	300
d(cm)						
	Record the Repeat the x(mm)	Repeat the same processx(mm)50	Record the distance d, of mass B from the Repeat the same process for other values $x(mm)$ 50 100	Record the distance d, of mass B from the pivot. Repeat the same process for other values of x in table 2 x(mm) 50 100 150	Record the distance d, of mass B from the pivot.Repeat the same process for other values of x in table 2 below and comx(mm)50100150200	Record the distance d, of mass B from the pivot.Repeat the same process for other values of x in table 2 below and complete the table.x(mm)50100150200250

(3 mks)

		COL	
	(d) Determine the slope, S of the graph.	apers.	(2mks)
	e ^o ⁰		
	ee ^t		
	(e) Given $S = \frac{F}{W}$, where F is the apparent	weight of object A in the liquid	L and W is the actual weight
	of A, find:-		
	(i) The value of F.		(2mks)
4.4e	¢		
for Note fr	(ii) The upthrust, U		(3mks)
NOT NI			
У			


PART B

You are provided with the following:

- A concave mirror with holder
- A screen
- A meter rule
- A candle
- A match box (to be shared)

Proceed as follow:

(f) Set up the apparatus as in figure 3 below.

(g) Put the oblect at a distance u = 30cm from the mirror. Adjust the position of the screen until a sharp image is formed on the screen. Record the distance V.

(h) Repeat procedure (b) above for the distance y = 40 cm and record the new distance V. complete the table 25t.Pr 3 below.

com

U(cm)	V(cm)	M=/u	(m+1)		
20					
30		4. ⁴			
40	N'N	2			
	. 6 ⁷				(2mks)
	~				
(i) Given f	$=\frac{V}{(m+1)}$, calculate	e the values of f her	nce determine the ave	erage value f _{av} :	(3mks
(i) Given <i>f</i> :	$= \frac{V}{(m + 1)}, \text{ calculate}$	the values of f here	nce determine the ave	erage value f _{av} :	(3mks)
(i) Given f	$= \frac{V}{(m + 1)}, \text{ calculate}$	the values of f here	nce determine the ave	erage value f _{av} :	
	$= \frac{V}{(m + 1)}, \text{ calculate}$	the values of f here	nce determine the ave	erage value f _{av} :	
	$= \frac{V}{(m + 1)}, \text{ calculate}$	the values of f here	nce determine the ave	erage value f _{av} :	(3mks)
	$= \frac{V}{(m + 1)}, \text{ calculate}$	e the values of f her	nce determine the ave	erage value f _{av} :	
(i) Given f	$= \frac{V}{(m + 1)}, \text{ calculate}$	e the values of f her	nce determine the ave	erage value f _{av} :	