Name \qquad Class \qquad
\qquad

121/1
MATHEMATICS
Paper 1
July/August 2014
TIME: $2{ }^{4} \%_{2}^{2}$ Hours

KĂMUKUNJI DISTRICT KCSE EVALUATION

Instructions to candidates

> Write your name, index number, admission number and class in the spaces provided above.
$>$ Sign and write the date of examination in the spaces provided above.
$>$ The paper contains TWO sections: Section I and Section II.
$>$ Answer ALL the questions in Section I and any five questions from Section II
$>$ All answers and working must be written on the question paper in the spaces provided below each question.
$>$ Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
$>$ Non - programmable silent electronic calculators and KNEC Mathematical tables may be used, except where stated otherwise.

For Examiner's use only

Section I

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	7	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	Total

Section II

17	18	19	$\mathbf{2 0}$	21	22	23	24	Total

Grand
Total

This paper consists of $\underline{20}$ printed pages
Candidates should check the question paper to ascertain that all the pages are printed as indicated and no questions are missing.

SECTION I

ANSWER ALL UESTIONS IN THIS SECTION (50 MARKS)

1. Evaluate the following:

$$
\begin{equation*}
5 / 3 \times 6 / 1 e^{65} / 4-1 / 4 \tag{3marks}
\end{equation*}
$$

2. Simplify

$$
\frac{9 t^{2}-25 a^{2}}{6 t^{2}+19 a t+15 a^{2}}
$$

(3 marks)
3. The marked price of a pair of shoes is Sh. 2400 . A customer buys the shoes and is offered a 10% discount and the seller still makes a profit of 20% on the cost of the shoes. Determine the cost price.

4. The figure below ABCD is a rhomid and triangle ABE is equilateral. Angle $\mathrm{DAE}=18^{\circ}$.

5. Solve for x in the equation

$$
9^{1 / 2 x-1}+25^{11 / 2}=8^{21 / 3}
$$

(3 marks)
6. The exchange rates are as follows;

1 U.S dollar $=$ Ksh. $87.60{ }^{2 \times 2} 4$
1 Sterling Pound
Mr. Brown sold a caneěra to Mr. Njoroge which he had bought at 214 Sterling pounds and at a loss of Ksh. 1184 3.90 . How much did Mr. Njoroge pay in Kenya shillings? (3 marks)

7. The sum of the digits of a two digit number is 11 . If the digits are interchanged the value of the number decreases by 63 . What is the number?
8. Use tables of cubes, square roots and reciprocals to evaluate to 4 s.f.
9. Solve the following quadratic equations by completing the square method.

$$
3 x^{2}-7 x-5=0
$$

10. If $\operatorname{Sin} x=5 / 13$ and x is an obtuse angle, evaluate

$\operatorname{Cos} x+\tan x$

$\operatorname{Sin} \mathrm{x}-\operatorname{Cos} \mathrm{x}$
11. A point $P(-2,5)$ is mapped onto $P^{1}(1,9)$ by a translation T_{1}. If P^{1} is mapped onto P^{11} by a translation T_{2} given by $\binom{-4}{-1}$. Find the coordinates of P^{11} and hence a single transformation which maps P^{1} onto P^{11}.
12. Using the protractor, ruler, pair of 280 mpasses and on the line A B shown below, show the locus of a point P such that angle $\angle \mathrm{APB}=78^{\circ}$.

13. Three towns A, B and C are situated so that $\mathrm{AB}=65 \mathrm{~km}$ and $\mathrm{AC}=115 \mathrm{~km}$. The bearing of B from A is 062° and the bearing of C from A is 278°. Calculate:
a) The distance BC
(2 marks)
b) The bearing of B from C
(2 marks)
14. Two grades of tea costing sh. 120eand sh. 150 per kilogram are mixed. In what ratio should the two grades be mixed in order to produce a mixture that costs sh. 144 per kilogram?

(3 marks)
$e^{e} 15$. A straight line $Y=m x-6$ passes through the point (3, 2). Find the value of M and the angle the line makes with the x - axis.
16. Using a ruler and a pair of compasses only, construct a triangle $A B C$ such that $A B=6.3 \mathrm{~cm}$, $\mathrm{BC}=4.5 \mathrm{~cm}$ and angle $\mathrm{ABC}=120^{\circ}$. Measure line AC .

SECTION II

17. A number of people working a factory decided to raise sh. 72,000 towards a famine relief. Each person was to contribute the same amount. Before the contributions were collected, five of the people retired from working at the factory. This means that the remaining contributors had to pay more to meet the s. ${ }^{x}$ me target.
(a) Taking ' n ' as the number of people working in the factory originally, write down an expression forgthe increase in the contribution per person. (3 marks)
(b) If the increase in the contribution per person was sh. 1200, find the number of people originally.
(c) How much would each person have contributed to the nearest shilling if the five had not retired?
(d) Calculate the percentage increaseain the contribution per person caused by retirements giving your answer to the nearest hundredth.

18. On the grid provided and using scale of 1 cm to 1 unit on both axis, draw triangle ABC e^{e} where $\mathrm{A}(1,2), \mathrm{B}(5,1)$ and $\mathrm{C}(3,4)$, hence use it to answer the following:
(a) (i) Draw the image $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ of ABC under a rotation of 90° clockwise about the origin and state the coordinates.
(2 marks)
(ii) Draw the image $A_{2} B_{2} C_{2}$ of $A_{1} B_{1} C_{1}$ under a reflection in line $y=x$ and state the coordinates of $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$.
(b) $A_{3} B_{3} C_{3}$ is the image under a refleefion in the line $x=0$. Draw the image $A_{3} B_{3} C_{3}$ and state its coordinates.
(c) Describe a single transformation that maps ABC onto $\mathrm{A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3}$.
(2 marks)
19. A cylindrical storage tank of dianaeter 14 cm is initially two thirds full of water. The tank is filled by a pipe of internal diametere 10 cm through which water flows at the rate of 56 litres per minute. Water starts flowing ineto the tank at 10:15 am and the tank is full at $2: 55 \mathrm{pm}$.
(a) Determine the height of the tank.
(b) Starting with the full tank, school uses water from this tank at the rate of $11,550 \mathrm{~cm}^{3}$ per day. Find how long it takes to consume all the water assuming that no more water is added. (3 marks)
(c) How long does it take for the tap to fill the tank when empty?
(2 marks)

20 Points $\left.\mathrm{D}\left(0^{\circ} 24^{\circ} \mathrm{E}\right), \mathrm{E}\left(0^{\circ} 21^{\circ} \mathrm{W}\right), \mathrm{T}^{\circ} \ell^{\gamma^{\circ}} 60^{\circ} \mathrm{N} 170^{\circ} \mathrm{W}\right)$ and $\mathrm{G}\left(60^{\circ} \mathrm{N} 110^{\circ} \mathrm{E}\right)$ are marked on a globe representing the earth with a radius 0.7 m . Taking $\Pi={ }^{22} / 7$:
(a) Find the length of the $\operatorname{arc} \mathrm{D}^{\circ} \mathrm{E}$
(b) If A is the centre of the latitude $60^{\circ} \mathrm{N}$ and B is the centre of latitude 0°, find:
(i) Length $A B$
(3 marks)
(ii) Area of the major sector ATG
(4 marks)
(iii) Calculate the time taken to move from D to E
21. Using a ruler and a pair of compasses only:
(i) Construct a triangle ABC such that $\mathrm{AB}=6.5 \mathrm{~cm}$, angle $\mathrm{CAB}=60^{\circ}$ and angle $\mathrm{ABC}=75^{\circ}$. (3 marks)
(ii) Construct a perpendicular of line $A \dot{C}$ at C and the perpendicular bisector of line BC and let them meet at pint O .
(iii) Draw a circle radius OB and centre O . The line AB extended meets the circle at point O .
(1 mark)
(iv) Construct a line parallel to line $A A^{2^{5}}$ and passing through point D . This line meets the circle at point E .
(v) Measure the sizes of lines DE and BC and hence find the area of BDEC.
22. In the figure below $\mathrm{AB}=3 / 4 \underline{4} \mathrm{AX}={ }^{2} / 3 \underline{\text { b }}$. BC is parallel to ED such that $\mathrm{BX}=1 / 3 \mathrm{ED}$. AC : CD $=3: 7$

(a) Express the vectors BX and ED in terms of \underline{a} and \underline{b} only.
(2 marks)
(b) Given that $\mathrm{BC}=\mathrm{hBX}$, express $\mathrm{A} \boldsymbol{D}^{\gamma}$ in terms of $\underline{a}, \underline{b}$ and \underline{h}.

(d) Solve for the values of h and k above.
23. The distance between two towns $\&$ and B is 460 km . A minibus left town A at $7: 15$ am and travelled towards B at an average sieed of $65 \mathrm{~km} / \mathrm{h}$. A car left B at 9:45 am on the same day and travelled towards A at an average speed of $100 \mathrm{~km} / \mathrm{h}$.
(a) How far from B did they meet?
(b) At what time did the two vehicles meet?
(c) A motorist started from his home at $8: 15 \mathrm{am}$ on the same day and travelled to B at an average speed of $120 \mathrm{~km} / \mathrm{h}$. He arrived at the same time as the minibus. Calculate the distance from B to his home.
24. The motion of a particle P movinga long a straight line is described by the equation $\mathrm{s}=8 \mathrm{t}+10 \mathrm{t}^{2}-\mathrm{t}^{3}$. Where s is the

Calculate:
(i) The distance whens $\hat{t}^{x}=2.5 \mathrm{sec}$.

(ii) The maximum velocity of the motion
(4 marks)
(iii) The acceleration of motion after 3 seconds
(2 marks)
(iv) The time at which the velocity is zero
(2 marks)

