		ge ^X Pat	
	NAME	,	INDEX NO
:	SCHOOL		CANDIDATES SIGNATURE
;	232/3		DATE
	PHYSICS (PRACTICAL) PAPER 3 JULY/AUGUST 2014 TIME: 2 ¹ / ₂ HOURS		
o co	KAMUKUNJI DISTRICT I	KCSE EVALU	J ATION TEST - 2014
Fot Mote #	INSTRUCTIONS TO CANDIDATES		

- -Answer ALL the questions in the spaces provided in the question paper.
- -You are supposed to spend the first 15 minutes of the $2^{1}/_{2}$ hours allowed for this paper reading the whole paper carefully before commencing with your work.
- -Marks are given for a clear record of the observations actually made, their accuracy and suitability and the use made of them.
- -Candidates are advised to record their observations as soon as they are made.
- -Mathematical tables and Electronic calculators may be used.

FOR EXAMINER'S USE ONLY

Question	Maximum score	Candidate's score
1	20	
2	20	
Total	40	

- 1) You are provided with the following apparatus:
 - -Resistance wire mounted on a scale labelled MN
 - -Switche
 - -Voltmeter

Ammeter

- -Two dry cells in a cell holder
- Seven connecting wires
- i) Set up the apparatus as shown in the figure below:

ii) Remove the crocodile clip from the resistance wire MN and close the switch. Record the voltmeter reading.

$$Y = \dots V \tag{1mk}$$

- iii) Attach the crocodile clip to the resistance wire such that L = 10cm.
- iv) Record the voltmeter and the ammeter readings in table 1.
- v)Repeat procedures (iii) and (iv) for L=20cm , 30cm, 40cm, 50cm, 60cm, 70cm, and 80cm .

agers.com

vi) Complete table 1

Table 1

Length (cm)	10 🔌	<u>\$20</u>	30	40	50	60	70	80
Current	Qaileirs							
I(A) p.d. (V)								
V(v)								
$R = \overline{\underline{V}}($								

(9mks)

vii) a) Plot a graph of
$$\frac{\mathbf{v}}{\mathbf{v} - \mathbf{v}}$$
 (y-axis) against R.

(5mks)

(3mks)

b) Determine the slope of your graph.

Given that the

d, determine the values of M and d.

(3mks)

- 2) You are provided with the following:
- A glass block
- -soft board
- -a plane paper
- -four optical pins
- -four paper pins
- a protractor
- a 30cm plastic ruler
- a) Fix the plane paper on the soft board using the four paper pins.
- b) Place the glass block on the plane paper. Let the glass block rest on the paper from the broader face.
- c) T race the glass block using a pencil
- d) Remove the glass block.

- e) Construct a normal at X to emerge through line DC. Let this normal meet line DC at point M.
- f) Mark point N along the emergent normal 5cm from M.
- g) Construct the line NP to meet the normal at N at 90°. Line NP can be about 10cm.
- h) Using a protractor, construct an incident ray RX at an angle of incidence = 10° . Fix two pins P₁ and P₂ along RX.
- i) Replace the glass block to the traced figure.
- j) View the path of the incident ray RX through the glass block using the other two pins P₃ and P₄. This can be done by ensuring that the images of P₁ and P₂ are in a straight line with the pins P₃ and P₄.
- k) Remove the glass block and draw the emergent ray through P₃ and P₄.
- 1) Measure the distance, d of the emergent ray from point N along line NP as shown in figure 3.

m) Record the corresponding values of d in table 2

Table 2

Angle of incidence i	100	20^{0}	30 ⁰	400	50 ⁰	600
Distance ,d (cm)						
Sin i						
Sin ² i						

2mks)
•

