\qquad
SCHOOL \qquad
\qquad

PHYSICS (PRACTICAL)

PAPER 3
JULY/AUGUST 2014
TIME ${ }_{2}^{21}{ }_{2}$ HOURS

KAMUKUNJI DISTRICT KCSE EVALUATION TEST - 2014

INSTRUCTIONS TO CANDIDATES

-Answer ALL the questions in the spaces provided in the question paper.
-You are supposed to spend the first 15 minutes of the $2 \frac{1}{2}$ hours allowed for this paper reading the whole paper carefully before commencing with your work.
-Marks are given for a clear record of the observations actually made, their accuracy and suitability and the use made of them.
-Candidates are advised to record their observations as soon as they are made.
-Mathematical tables and Electronic calculators may be used.
FOR EXAMINER’S USE ONLY

Question	Maximum score	Candidate's score
1	20	
2	20	
Total	40	

1) You are provided $\underset{\hat{x} \text { ith }}{x}$ the following apparatus:
-Resistance wire mounted on a scale labelled MN
-Switche
-Volemeter
${ }^{\circ}{ }^{\circ} \mathrm{mmmeter}$
-Two dry cells in a cell holder

- Seven connecting wires
i) Set up the apparatus as shown in the figure below:

ii) Remove the crocodile clip from the resistance wire MN and close the switch. Record the voltmeter reading.

$$
Y=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . V
$$

iii) Attach the crocodile clip to the resistance wire such that $\mathrm{L}=10 \mathrm{~cm}$.
iv) Record the voltmeter and the ammeter readings in table 1.
v)Repeat procedures (iii) and (iv) for $\mathrm{L}=20 \mathrm{~cm}, 30 \mathrm{~cm}, 40 \mathrm{~cm}, 50 \mathrm{~cm}, 60 \mathrm{~cm}, 70 \mathrm{~cm}$, and 80 cm .
vi) Complete table 1

Table 1
vis

Length (cm)	10	4	30	40	50	60	70	80
Current I(A)	$e^{e^{-e^{e^{4}}}}$							
$\text { p.d. } \left.(\mathrm{V}) \varsigma^{2}\right)^{x}$								
$t^{x^{2}-V(v)}$								
$\left.\frac{v}{(\bar{v}} \bar{v} \bar{\nu}\right)\left(\frac{v}{v}\right.$								
$\mathrm{R}=\frac{\bar{V}}{I}(\quad)$								

vii) a) Plot a graph of $\frac{\mathbf{V}}{\mathbf{Y}-\mathbf{V}} \quad$ (y-axis) against R.
(5mks)

b) Determine the slope of your gaph.
c) Given that the law relating V, Y and R is

2) You are provided with the following:

- A glass block
-soft board
-a plane paper
-four optical pins
-four paper pins
- a protractor
- a 30 cm plastic ruler
a) Fix the plane paper on the soft board using the four paper pins .
b) Place the glass block on the plane paper. Let the glass block rest on the paper from the broader face.
c) T race the glass block using a pencil
d) Remove the glass block.

Mark a point X on one of the longer side of the traced glass block as shown in figure 2. Point X should be 2 cm from edge A.
e) Construct a normal at X to emerge through line DC . Let this normal meet line DC at point M . f) Mark point N along the emergent normal 5 cm from M .
g) Construct the line NP to meet the normal at N at 90°. Line NP can be about 10 cm .
h) Using a protractor, construct an incident ray RX at an angle of incidence $=10^{\circ}$. Fix two pins P_{1} and P_{2} along RX.
i) Replace the glass block to the traced figure.
j) View the path of the incident ray RX through the glass block using the other two pins P_{3} and P_{4}. This can be done by ensuring that the images of P_{1} and P_{2} are in a straight line with the pins P_{3} and P_{4}.
k) Remove the glass block and draw the emergent ray through P_{3} and P_{4}.

1) Measure the distance, d of the emergent ray from point N along line $N P$ as shown in figure 3 .

m) Record the corresponding values of d in table 2

Table 2

Angle of incidence i	10^{0}	20^{0}	30^{0}	40^{0}	50^{0}	60^{0}
Distance ,d (cm)						
$\operatorname{Sin} \mathrm{i}$						
$\operatorname{Sin}^{2} \mathrm{i}$						

n) Repeat the procedure for other values of i.
o) Plot a graph of $\sin ^{2} i$ (y-axis) against d
p) Calculate the gradient of the graph.

