	cont
NAME:	éF.
SCHOOL:	
	TRICT JOINT EVA
233/3	
CHEMISTRY 554	<u>A</u>
Paper 3	
(PRACTICAL)	
Oct/Nov - 2013	
Time: 2 Hours	
	FRICT JOINT EVA
KINT SOUTH DIS	ΓΚΙΟΓΙΟΙΝΤΕΈΛΑ

INDEX NO
CANDIDATE'S SIGN
DATE

KIST SOUTH DISTRICT JOINT EVALUTION TEST-2014 Free

Kenya Certificate of Secondary Education (KCSE)

for Note 233/3**CHEMISTRY**

Paper 3 (PRACTICAL) Oct/Nov - 2013 **Time: 2 Hours**

INSTRUCTIONS TO CANDIDATES

- 1. Write your name and Index number in the spaces provided.
- 2. Answer ALL the questions.
- 3. Answers must be written in the spaces provided in the question paper.
- Additional pages must not be inserted. 4.
- Candidates should check the question paper to ascertain that all the pages are printed. 5.
- This paper consists of 12 printed pages 6.

FOR EXAMINER'S USE ONLY

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE

This paper consists of 8 printed pages.

Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing.

1. You are provided with the following:

- i) Solution M which is 0.2 M sodium hydrochloric acid.
- ii) Solution N which is a Hydrochloric acid
- iii) 1.0g solid X which is a carbonate F_2CO_3 .

You are required to:

- Standardize solution N
- Determine the RAM of F in F_2CO_3 .

Procedure

- Fill the burrete with dilute Hydrochloric acid (Solution N)
- Pippete 25cm³ of sodium hydrotide solution M into a conical flask
- this solution and 2-3 drops of methyl orange indicator

- Titrate this solution with solution N and record your result in table I below. Repeat the procedure two more times to complete the table.

× 410	Table	1	2	3
\$ ⁰	Final burette readings(cm ³)			
	Initial burette readings(cm ³)			
	Volume of HCl used cm ³ (solution N)			

(3 mks)

- a) i) Determine the average volume of solution N used. (1 mk)
 - ii) How many moles of sodium Hydroxide are there in 25 cm^3 of solution M used. (1 mk)
 - iii) Calculate the concentration of HCl (solution N) in moles per dm^3 (1 mk)

Procedure II

- Measure 100cm of Hydrochloric acid(solution N) into a clean beaker. Put all solid X in the beaker containing 100cm³ of solution N. Leave the acid to react with solid X for 3 minutes.

- Label the resulting solution as L.
- Fill the burette with solution L.
- Titrate this solution with 25.0 cm³ portions of sodium Hydroxide solution M.
- In the conical flask using methyl orange indicator. Repeat the procedure to complete the table II below.

Table II	1	2	3
Final burette readings(cm ³)			
Initial burette readings(cm ³)			
Volume of solution L used cm ³			
		J	(3 mks)

- Calculate the average volume of solution L used. b) i) (1 mk)Find the number of moles of solution L in the average volume. ii) (1 mk) Find the number of moles of solution L in 100 cm^3 . iii) (1 mk) Number of moles of Hydrochloric acid in the original solution N. iv) (1 mk)
 - Find the number of moles of HCl which reacted with solid X (F_2CO_3) v) (1 mk)
 - Find the number of moles of solid X which reacted with acid. vi) (1 mk)
 - Find the reactive molecular mass of solid X and hence the relative atomic mass of vii) É. (2 mks)
- You are provided with the following: 2.

i)

FOT NOTE Free

- olution D, which is 2 M Hydrochloric acid ii St
 - Solution B, which is 0.1 M sodium Thiosulphate $(Na_2S_2O_3)$
 - You are required to find out the effect of change of temperature on the rate of reaction between Sodium thioslphate and hydrochloric acid.

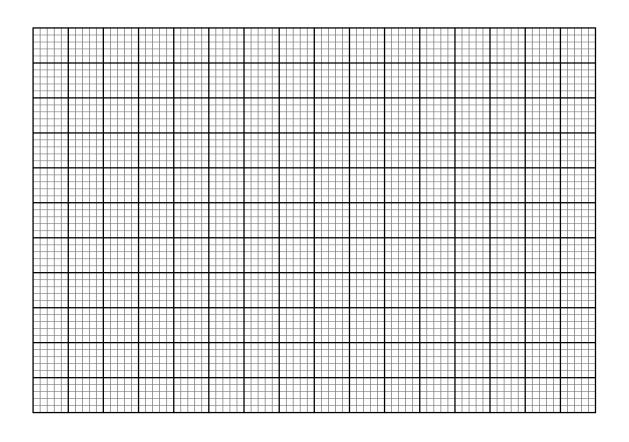
NB: The end result of this reaction is the formation of a yellow/ white precipitate of colloidal sulphur.

Equation:

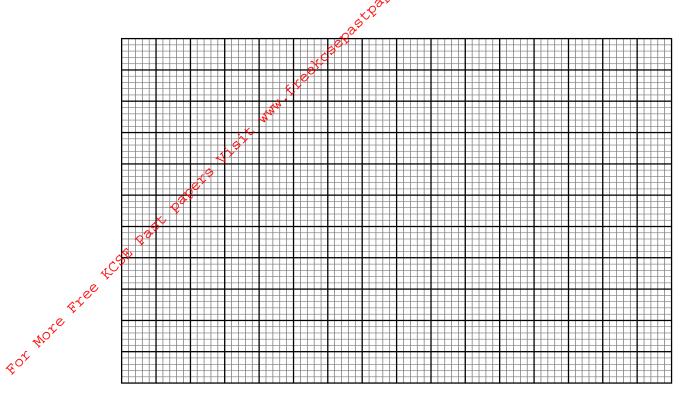
$$Na_{2}S_{2}O_{3(aq)} + HCl_{(aq)} \longrightarrow S_{(s)} + SO_{2(g)} + 2NaCl_{(aq)} + H2O_{(l)}$$

Procedure:

- Measure 5 cm^3 of solution D into a clean 100cm3 glass beaker. i)
- Place it together with its contents on a white piece of paper with the word CHEM written ii) on it in bold print.
- Measure the temperature of the solution D iii)
- iv) Record it as shown below in the Table
- Measure 100cm3 of solution B v)
- vi) Add this to the contents of the beaker in(i) above set off the stop watch or clock immediately.
- vii) Record the time taken for the printed word CHEM to become invisible when viewed above the reaction mixture in the 100cm3 beaker
- Thoroughly wash the beaker used in (i) above viii)


Repeat the experiment using HCl solution D at the temperature indicated in the table. ix) xPat

	Test No.	Volume of	Volume of	Temperature	Time in (s)	Reciprical
		Volume of solution	$Na_2S_2O_3$	°C		of time 1/t
		D(HCI) in	solution B			s^{-1}
		D(HCl) in	cm ³			
	1 j'r	5	10	Room		
	ers			temperature		
	2 2	5	10	30		
\$	p3	5	10	35		
ALCS E	4	5	10	40		
Jee F	5	5	10	45		
¢,≻ ∠©	6	5	10	50		
x More Free KCSE P	7	5	10	55		
22	8	5	10	60		


(6 mks)

On the grids provided plot a graph of:

i) Time (sec) on x axis against Temperature °C y axis

© 2014 – Kisii South District Academic Committee 4 233/3 Chemistry Turn Over

- b) Comment on the effect of change of temperature on the rate of the reaction between sodium thiosulphate and hydrochloric acid.
- Use the graph of temperature against the recipricoal of time in a) (ii) above to estimate the c) time that the reaction would take at 58 °C
- Use the graph of time against temperature in a(i) bove to calculate the rate of reaction at d) 43°C
- 3.
- You are provided with solid L. Use it to carry out the tests below and record your results a) in the table provided.

TEST	OBSERVATION	INFERENCES
a) Transfer all solid L into a		
boiling tube. Add 10cm3 of 1M		
HNO3 and shake Dip a glass rod		
into calcium Hydroxide solution		
and place it at the mouth of the		
boiling tube.	1 mk	½ mk
b) To about 2 cm3 of the solution		
in a test tube add 3 drops of lead		
II Nitrate solution and warm	1 mk	½ mk
c) To about 2 cm3 of the solution		
in another test tube add 2M		
) 14 – Kisii South District Academic Com	mittee 5 233/3 Ch	emistry Turn Over

© 2014 – Kisii South District Academic Committee

	COTT	
sodium Hydroxide solution drop		
wise till in excess	½ mk	¹∕₂ mk
d) To about 2 cm3 of solution in		
another test tube dip a clean		
another test tube dip a clean reference of the solution of the		
and place it on a burner flame.	1⁄2 mk	¹⁄₂ mk
J ^{ip}		

- You are provided with solid Q, you are required to: b)
 - i) 201 Carry out the tests described below on solid Q
 - Record your observations and inference accordingly
 - iii) Test any gases provided.

Procedure:

oii)

FOR MORE Free ACSE

- i) Place a spatula full of solid Q in a boiling tube
- ii) Add about 15 cm3 of distilled water and shake
- iii) Divide the resulting solution into four portions
- Use a universal indicator paper to test portion one of the solution iv)

Observation	Inference
½ mk	¹ ∕2 mk

Add a spatula full of sodium carbonate to the second portion. v)

Observation			Inference	
1/ mala	1	/		
½ mk	7	2 mk		
South District Academic Committee	6	233/3	Chemistry	Turn Over

© 2014 – Kisii South District Academic Committee 6 233/3 Chemistry

	Ċ	o ^{ft}			
vi	vi) Add three drops of acidified Botassium Manganate (vii) solution to the third portion. Observation 2905 Inference				
	portion.				
	Observation	Inference			
	Visit www.freekce				
	Jist				
	1/2 mlk	¹ ∕2 mk			
vi	$i e^{2^{4}}$ Place 4 cm3 of Ethanol in a test tu	be Add two drops of concentrated Sulphuric (vi)			
Pat	acid and then a spatula full of solid	Q shakes well and warm the mixture carefully.			
ACS ^{\$\$}	Pour the warm mixture into the sm	ell.			
and e	Observation	Inference			
vii Past For More Free Cost Past					
\$ ^{0¹}					
	1⁄2 mk	¹ ∕2 mk			

For More Free KCB Past pages Visit www.treekceepastpages.com