	- Raper	
NAME:		INDEX NO:
SCHOOL:		CANDIDATE SIGN:
	Ere exce	DATE:
232/1	May Etc	
PHYSICS		
PAPER 1 (THEORY))	
JULY/AUGUST-2014		
JULY/AUGUST-2014 TIME: 2 HOURS		

KISH SOUTH SUB-COUNTY JOINT EVALUTION EXAM-2014

Kenya Certificate of Secondary Education (KCSE)

232/1 PHYSICS PAPER 1 (THEORY) **JULY/AUGUST-2014**

TIME: 2 HOURS

INSTRUCTIONS TO THE CANDIDATE:

- Write your name and index number in the spaces provided above. a)
- Sign and write the date of examination in the spaces provided above. b)
- This paper consists of two sections A and B. c)
- Answer all the questions in section A and B in the spaces provided d)
- All working must be clearly shown in the spaces provided. e)
- Non-programmable silent electronic calculators and KNEC mathematical tables may be f) used.

FOR EXAMINER'S USE ONLY:

Section	Question	Maximum score	Candidate's score
A	1-14	25	
	15	8	
	16	6	
В	17	8	
	18	11	
	19	11	
	20	10	
	TOTAL SCORE	80	

This paper consist of 12 printed pages. Candidate should check the question paper to ascertain all pages are printed as indicated And no questions are missing.

1. A student used the measuring instrument shown below to measure the thickness of a cylindrical wire, If the wire is 10cm long, find the volume of the wire. (3mks)

2.5 The figure below shows two containers of equal volume but of different diameters.

Equal volume of hot water was put in both containers. Explain why it cools faster in the Wider container than in the narrower one. (lrnk)

3. A body in a uniform circular motion experiences acceleration despite moving at a constant speed. Explain. — (1mk)

4. The diagram below shows a-metal tube made of iron and copper. The joint is tight at room temperature.

Explain how you would separate the two by changing the temperature given that copper expands more than iron for some change in temperature. (2mks)

.....

7.	A trolley of mass 0.5kg moving with a velocity of I .2ms ⁻¹ collides in elastically wit trolley of mass 1.5kg moving in the same direction with a velocity of 0.2ms ⁻¹ .Deter velocity of the trolleys after collision	
		, ,
	actived.	
		•••••
8.	Highlight one fact which shows that heat from the sun does not reach the earth surfactor convection.	(1 rnk)
•••••		•••••
•••••		•••••
9.	State one reason why mercury is preferred as a barometric liquid and not water.	(lmk)
6.		
No.		•••••
10.	State one reason why racing cars are stable.	(lmk)
•••••		
•••••		
11.	Find the velocity ratio of the following gear wheels.	(2mks)
	Effort gear Load gear	
•••••		
•••••		
12.	A stone and a feather are dropped from rest from a building 20m tall. If they reach t the same time, find.	he ground at
	(a) The velocity with which they reach the ground. (Take $g=10m/s^2$)	(2rnks)
•••••		
•••••		
	(b) The condition under which they fall.	(lmk)
•••••		
•••••		

		contract on a trallance channe halanger's contract	
13.	The f	forces act on a trolley as shown below.	
		→ 4N 2kg ct 6N	
	Find t	he acceleration of the trolley.	(2mks)
14.	On th	ne axes below, sketch the graph of density of water against temperature.	(1mk)
e şter	On th	Density (g/cm²)	
		5 10 Temp in 0°C	
15.	(a)	SECTION B (55MKS) A car is negotiating unbanked circular track. State one factor that will determine	
		the critical speed of the car.	(1mk)
	(b)	Given that the ear above has a mass of 1000kg and the circular path has a radius of Determine the maximum speed with which the motorist can travel so as not to ski frictional force between the tyres and the road is 6500N.	
•••••	•••••		
	()	A 200	•.1

(i) The speed of the mass (2mks)

.....

5

				£\$.				
				92 [©]				
	(ii)	The tension path (Take g	in the string where $g = 40 \text{m/s}^2$					circular (2rnks)
		nut six						
		7						
obse	erve the mo		e particles can moke is closed		•		_	
Mic Est	Fig.7				-	microsco	pe	
î.		Lamp	Lens	\			Smoke Co	et
(a) (i)	Explair Smoke		the smoke parti	cles, lens	and microsco	pe in the exp	eriment.	(1 mk)
(ii)	Lens							(1 mk)
(iii)	Micro	scope						(lmk)
(b)	State a	and explain th	ne nature of the	observed	motion of the	e smoke parti	icles.	(2rnks)
(c)	State w	vhat will be o	bserved about oke cell is raise	the motioned slightly.	of the smok		the tempera	ture (1 mk)

(b) The pressure acting in a gas in a container was changed steadily while the temperature of the gas was maintained constant. The value of volume V of the gas measured various values of pressure. The graph in the figure A shows the relation between the pressure. P1 and the reciprocal of volume 1/V

Given that the relation between the pressure P1 and the value, V1 of the gas is given by PV = k Where k is a constant, use the graph to determine the value

(ii) What physical quantity does **K** represent? (1mk.)

iv) State **one** precaution you would take when performing such an experiment. (1mk)

(c) A gas occupies a volume of 4000 litres temperature of 37° C and normal atmosphere pressure. Determine the new volume of the gas if it is heated at constant pressure to a temperature of 67° C (normal atmosphere pressure $P = 1.01 \times 10^{5}$ pa) (3marks)

((c)		n solid of vo . Determine				f kerosen	e) (densi	ty 800 kg1	rn ⁻³) when (3mks)
•••••					'/Y'					
				St. C.S						
		• • • • • • • • • • • • • • • • • • • •		Exe						
			, Thir	••••••						
•••••		• • • • • • • • • • • • • • • • • • • •	<u>×</u>							
			j;\$^							
			Ģ							
		oa ^Q								
19. ((a)	Define a	angular disp	lacement.						(1 rnk)
		······································	• • • • • • • • • • • • • • • • • • • •							
4	ÇQ,									
a e										
,,o ^{re & ree} ((b)		of 20 g is 1	4 cm from	the centre	of a comp	act disc r	otating at	75 revolu	utions per
NOT.			Determine:							(2 1)
			the angular s	_						(2 mks)
•••••	• • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •				•••••
•••••	• • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •							
•••••										
		ii)	the centripe	tal acceler	ation					(2 rnks)
			• • • • • • • • • • • • • • • • • • • •							
			• • • • • • • • • • • • • • • • • • • •							
•••••										
•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • •	••••••	• • • • • • • • • • •	••••••
,	(c)	Shown	in the figure	helow are	dots which	h were ma	de by a tid	eker time	r_tare atta	ched to a
`	(C)		Scale 1.5	ociow arc	dots wine	ii were iiia	de by a th	cker time	1-tare atta	iched to a
		J								
				·····						
		•	<u> </u>	4	· · · · · · · · · · · · · · · · · · ·		•	• •	• ————————————————————————————————————	4-
		A			Ð				С	
		TEN C	0.1	.•	7011 D					
			quency of th The velociti				or the tro	lley:		(3mk)
		1)		es detweet						
							,			
•••••	• • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •							

		ii) The dece	leration of the trolley		(3mks)
••••					
••••					
••••					
			arth.		
••••					
20.	(a)	What is meant by	y specific heat capacity?		(1 mk)
••••	• • • • • • • • •	, \$ ³ \$			
••••	b) _ ^	A heater rated 1	.25 kW is used to heat 3 kg		
	b) cesti	A			•
مرد	e T				/
16 Ex		Temp (°C)			
ÒA		50		/	
		20_			
		0		45	Time (cala)
			5	15	Time (min)
	Use	the information in t			
	i)	the specific heat	capacity of the substance in	n solid form.	(3 mks)
••••	• • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
••••	• • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
••••	• • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
••••	• • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
••••	• • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
••••					
	ii)	the latent heat o	f fusion of the substance.		(2 mks)
••••					
••••	• • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
••••				• • • • • • • • • • • • • • • • • • • •	
••••	• • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	
	iii)		or the temperature to reach	90°C, assuming spo	
		does not change			(3 rnks)

	treexceepaet pagets.	
	, QaQ	
	20 ⁰	
	A Co	
	£'te	
	Mr.	
iv)	Suggest a reason why the actual time may be longer.	(1 mk)
Free Acsir	3°	