co ^r	
NAME:	INDEX NO:
SCHOOL:	DATE:
CANDIDATE'S SIGN	
233/1 CHEMISTRY PAPER 1 JULY/AUGUST 2014 PETE	
Pas Pas	
KIŠUMU WEST DISTRICT JOINT EV Kenya Certificate of Secondary Educo	ALUATION EXAN
CHEMISTRY	

PAPER 1

INSTRUCTIONS TO CANDIDATES:

- Write your **name**, school and **index number** in the spaces provided above.
- Sign and write the date of examination in the spaces provided above.
- Answer all the questions in the spaces provided.
- Mathematical tables and silent electronic calculators may be used for calculations.
- All workings **must** be clearly shown where necessary

For Examiner's Use only:

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
1 - 28	80	

This paper consists of 8 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

	e.com	
1.	A mixture contains iron (III) chloride, zinc (1) oxide and potassium chloride. Describe ho	ow each of
	the substance can be obtained from the maxture.	(3mks)
	Steph .	
2.	An element, X has atomic number 14 while element B has atomic number 8.	
	i) Write the electronic arrangement for each element.	(2mks)
	2 ^{3,2} 2	
	ii) Draw using dots (•) and crosses (x), diagram to show the bonding between X and B	(2mks)
St.		
More		
\$ ⁰ ¹		

60cm³ of oxygen gas diffused through a porous portion in 50 seconds. How long would it take 60cm³ of sulphur (IV) oxide gas to diffuse through the same portion under same conditions.
 (S=32.0, O=16.0)

4. A sample of tap water was divided into three portions. The table below shows the tests carried out on the portions and observations made.

Test	Observations	Inferences
To the first portion, 1cm ³ of soap	No lather formed	(i)
solution was added		
The second portion was boiled, cooled	No lather formed	(ii)
and 1cm ³ , of soap solution added.		
To the third portion, 3cm ³ of aqueous	Lather formed immediately	(iii)
sodium carbonate was added the mixture		
filtered and 1cm ³ of soap solution added		
to the filtrate.		

	Complete the table by filling the inferences.	(3mks)
5.	a) Name two types of flame of the Bunsen burner.	(1mk)

		c.con	
		b) Which is the better flame for heating in the laboratory. Give two reasons.	(2mks)
		Le ^{R²}	•••••
	6.	a) Both iodine and astatine belong to the same group in the periodic table, Name the group.	(1mk)
		b) Astatine is below fodine in the group compare their boiling point, giving reasons.	(1mk)
		2 ^{0²}	•••••
	7.	A colourless liquid freezes at 8.5° C and boils at 121° C. It contains carbon 40% hydrogen 6.7	1% and
the rest is oxygen. The relative molecular mass of the compound is 60. (H=1.0, O=16, C=10) $(H=1.0, O=16)$		the rest is oxygen. The relative molecular mass of the compound is 60. (H=1.0, O=16, C=12))
	E.L.	^e a) Determine its empirical formula.	(2mks)
4	ore		•••••
FOT		b) Find the molecular formule of the liquid	(1mk)
			(1111K)
	8.	a) Distinguish between exothermic and endothermic chemical reactions.	(1mk)
		b) The heats of combustion of carbon, hydrogen and ethanol are -393, -286 and -1386 kJMol	-1
		respectively. Calculate the heat of formation of ethanol.	(3mks)

9. Given below are pH values of different solutions **P**, **Q** and **S**. Study it and answer the questions that follow.

Solution	рН	
Р	1	
Q	7	
S	14	
a) Which two solutions would react together to give a pH of 7.0		(1mk)

- b) Which solution can be considered to be apoxide of hydrogen.
- **Substances** Melting points **Boiling points Electrical conductivity** Solid Liquid 1083 2567 Good Good А В -182 -164 Poor Poor 1723 2230 Poor Good Ď 993 1695 Poor Poor State with a reason which of the above is:i) An ionic compound. (1mk)ii) A metallic structure. (1mk)..... iii) A giant atomic structure. (1mk)..... i) State how burning can be used to distinguish between ethane and ethyne. Explain. (2mks)ii) Draw and name the structural formula of the third member of the homologous series of ethyne. (1mk)..... In the Haber process, the optimum yield of ammonia is obtained when a temperature of 450° C, pressure of 200 atmospheres and an iron catalyst are used. Equation for the reaction is shown below.
- 10. The table below gives properties of tour substances.

FOF

11.

12.

$N_{2(g)} + 3H_{2(g)}$	$2NH_{3(g)}$	Δ H= -92kJ.
>		

How would the yield of ammonia be affected if:

i) Temperature raised to 600 ⁰ C	(1mk)
ii) Pressure raised to 250 atmospheres.	(1mk)
iii) The amount of catalyst doubled Explain.	(2mks)
·····	

	con.
	20°.
13.	The set up below was used to obtain a sample of iron.

	Carbon Excess Iron (II) oxide	
	Oxvgen	
	i) Write two equations for the reaction which occur in the combustion tube.	(2mks)
	P ² N	
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ $ \\ \end{array} \\ \end{array} \\ \\	(1mk)
194.	The reaction below refers to preparation of an insoluble salt of lead starting with lead metal. Sodium	
\$ ⁰	Lead $\xrightarrow{\text{Reagent}}$ Solution $X \xrightarrow{\text{solution}}$ Mixture $\xrightarrow{\text{Filter}}$ Residue Q	
	A a) Name the type of reaction between solution X and sodium sulphate solution.	(1mk)
	b) Write the ionic equation for the reaction in (a) above.	(1mk)
	c) Explain why it is not possible to prepare residue Q using lead metal and sodium sulphate	•••••
	solution.	(2mks)
15	A student set up the apparatus as shown below to prepare and collect dry ammonia	
101	Drying agent	
	Ammonium chloride + calcium hydroxide	
	i) Identify two mistakes in the set up and give a reason for each mistake.	(2mks)
	I	
	II	•••••
	ii) Name a suitable drying agent for ammonia	(1mk)
		• • • • • • • • • • • • • •

18.	a) Aluminium is extracted through electrolysis process while copper is extracted through reduction	
	process. Explain.	(2mks)
	b) Name the process that is used to concentrate the zinc ore, in Zinc extraction process.	(1mk)
19.	Give the systematic names of the following hydrocarbons.	
	i) CH ₃ (CH ₂) ₄ CH ₃	(1mk)
	CH_3	
	ii) $CH_3 - C = CH_2$	(1mk)

20. The diagram below represents the apparatus $e^{\frac{1}{2}}$ student used to prepare and collect sulphur (iv) oxide

	gas. Liquid J Solid X $y_{1:5}$ $y_{1:5}$ $h \uparrow \uparrow$ Heat	Liquid K	Sulphur (IV) oxide gas
	() Name the substances.		(1mk)
	x		(1mk)
le Le	К		(1mk)
FOT NOT	ii) What property of the gas makes it possi	ble to be collected as	shown in the diagram. (1mk)
22.	substance. Use the standard electrode potentials for the eleme letters do not represents the actual symbols.	ents to answer the que	(2mks) stions that follows. The
		E ["] (V)	
	$D^{2+}_{(aq)} + 2e^{-} \longrightarrow D_{(s)}$	+0.34	
	$B^{2+}_{(aq)} + 2e^{-} \longrightarrow B_{(s)}$	+ -2.38	
	$E_{2(g)} + 2e^{-} \longrightarrow 2e^{-}_{(aq)}$	+0.54	
	$2C^+_{(aq)} + 2e^- \longrightarrow C_{2(g)}$	+0.00	
	i) Which element is likely to be hydrogen?	Explain	(1mk)
	ii) Identify two half cells from the above that whe the largest e.m.f. calculate the e.m.f.	n combined will give	an electrochemical cell with (3mks)

	con			
23.	Chlorine gas was bubbled through potassiumoodide solution.			
	a) State the observation that would be made.	(1mk)		
	b) Write the ionic equation for the reaction that took place in (a) above.	(1mk)		
	c) Identify the oxidizing agent in the ionic equation (b) above.	(1mk)		
24.	During a reaction between iron (III) chloride and chlorine gas 6.30g of iron(II) chloride were converted to 8.06g of iron (III) chloride. Calculate the volume of chlorine gas used. $\sqrt{10^{4}}$ e = 56, Cl = 35.5, M.V = 24dm ³)	(2mks)		
Ę	¢ee			
M025.	Two detergent A and B are represented as:			
*Of	$CH_3(CH_2)_{11}COONa and CH_3(CH_2)$ OSO ₃ Na.			
	A B			
	Which of the detergent is suitable for washing using water containing magnesium sulphate?			
	Explain	(2mks)		
		•••••		
26.	Consider the equations below.	•••••		
	$LO_{(s)} + CO_{(g)} \longrightarrow L_{(s)} + CO_{2(g)}$ $2Li_{(s)} + F_{(g)} \longrightarrow 2LiF_{(s)}$			
	$J^{+}_{(s)} + e^{-} \longrightarrow J_{(s)}$			
	Which of the reactions are redox? Explain.	(2mks)		
27.	a) What is a fuel?	(1mk)		
	b) State two factors to consider while choosing a fuel.	(1mk)		
		•••••		
28.	(a) Explain the observation made when, burning magnesium is lowered into a glass jar of sulphur			
	(IV) oxide.	(1mk)		
	(b) Write an equation for the reaction that takes place in (a)	(1mk)		