NAME:	er e	INDEX NO	
SCHOOL:	1000 A	DATE:	
CANDIDATE'S SIGN:	()	•••••	
	Erejre		
	rd.		
233/2 CHEMISTRY			
PAPER 2			

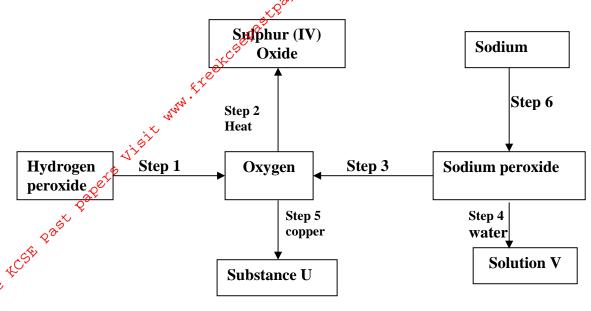
KISUMU WEST SUB-COUNTY JOINT EXAMINATION-2014

Kenya Certificate of Secondary Education (K.C.S.E.)

CHEMISTRY PAPER 2

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:


- Write your name, school and index number in the spaces provided above
- Sign and write the date of examination in the spaces provided.
- Answer all the questions in the spaces provided.
- All working **must** be clearly shown where necessary.
- Mathematical tables and electronic calculators can be used.

For Examiners Use Only

Question	Maximum score	Candidate's score	
1	11		
2	10		
3	14		
4	11		
5	15		
6	11		
7	08		
Total	80		

This paper consists of 10 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

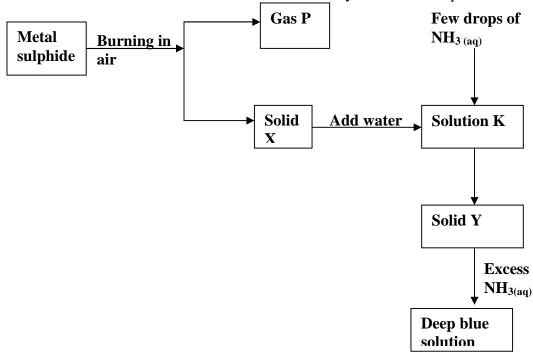
1. Study the reaction scheme below and answere the questions that follow.

a) Identify the substances labelled:

i) Substance U	(1mk)
ii) Solution V .	(1mk)
b) Name the reagents necessary for the reactions in the following steps. i) Step 1	(4mks)
ii) Step 2	
iii) Step 3	
iv) Step 6	
c) Give the condition necessary for the reaction in step 5 to take place.	(1mk)
d) Write equations for the reactions in the following steps i) Step 1	(3mks)
ii) Step 2	
iii) Step 5	

2. a) The results of an experiment to determine the solubility of solid \mathbf{Y} in water at 40° C were as follows.

Mass of dish = 16.98


Mass of dish + saturated salt at 40° C = 26.955g

Mass of dish+ solid after evaporation to dryness = 17.96g

Determine solutility of solid Y using the data above.

(3mks)

b) The scheme below shows some reaction of salt. Study it and answer questions that follow.

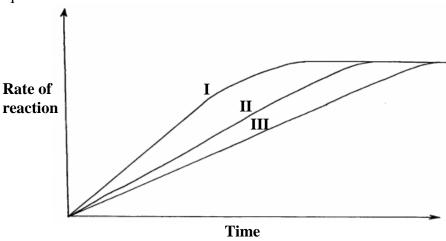
- i) Write an equation for the reaction to show formation of gas \mathbf{P} and solid \mathbf{X} . (1mk)
- ii) Give the name and formula of the complex ion responsible for the deep blue colour in the solution. (2mks)

.....

c) Study the equation below and answer the questions that follow:

$$N{H_4}^+_{(aq)} + \ H_2O_{(l)} \ \ \ \ \ \ \ \ NH_{3(aq)} + \ H_3O^+_{(aq)}$$

Identify the reactant that acts as an acid in the reverse process. Explain your answer.	(2mks
······································	
d) i) What is meant by hard water?	(1mk)
ii) Using an ionic equation, explain how sodium carbonate removes permanent hardness	of water
1) Coming an Tome equation, explain now social caroonate removes permanent naraness	(1mk)
······································	
The scheme below shows several reactions starting with propanol. Study the scheme and questions which follow.	answer the
Propane	
water Conc.	
$\begin{array}{c c} & & & & \\ \hline & H_2SO_4 & & \\ \hline & CH_2CH_2CH_2OH & & Na \\ \hline \end{array}$ Gas R	
S Excess CH ₃ CH ₂ CH ₂ OH Gas R	
CH ₃ CH ₂ COOCH ₂ CH ₃	
a) Name gas R .	(1mk)
b) Name and draw the structural formula of compound ${f Q}.$	(2mks)
c) What conditions and reagents are necessary to convert S to CH ₃ CH ₂ COOCH ₂ CH ₃	(2mks)
Reagents;	
Conditions;	


3.

e) The table below shows some properties of organic compounds **U**, **V**, and **W**. use the information to answer the questions that follow.

	W vcsex	V	U
Reaction with liquid	Decolourise	No reaction	Decolourises bromine
bromine.	bromine very fast		liquid slowly
Combustion	Burns with yellow	Burns with a blue flame	Burns with a yellow
, six	smoky flame	leaving no residue	sooty flame
Reaction with cong.	No reaction	It is dehydrated to form	Reacts to form V.
H ₂ SO ₄		compound U.	

To which homologous series do the following compounds belong?	(3mks)
U	
V	
W	
f) $CH_2 = CH - CH_3$ when heated under high temperatures and pressures forms a solid with	large
molecular mass.	
i) Write the equation for the reaction which involves the formation of the solid.	(1mk)
	•••••
ii) Name the solid and give one use of the solid	
Name	(1mk)
Use	(1mk)

4. a) Below is a graph that was obtained when different concentrations of hydrochloric acid was reacted with equal amount of calcium carbonate.

g) State two uses of cracking.

(2mks)

The co	oncentrations o	f hydrochloric	acid were	.8M, 0.5	M and 0.	1M. The	calcium	carbona	te was in	l
powde	er form. Match	the graphs with	h comeentra	tion.						
Graph	I	5 (5)	SeQ						(1m	k)
•••••		<u>,</u> 20 ⁵⁷			•••••	• • • • • • • • • • • •				
		······································								
Graph	III	a X							(1m	k)
		, , , , , , , , , , , , , , , , , , ,			•••••	• • • • • • • • • • • •				
b) A st	tate of equilibr	ium between d	ichromate (VI) and	chromate	ions is es	stablished	d as show	wn in the	•
equa	ation below.									
4CSV	$Cr_2O_{7(aq)}^{2-} + 2O_{7(aq)}^{2-}$	$OH^{-}_{(aq)}$	$\stackrel{>}{=} 2CrO_{4(aq)}^{2-}$	$+ H_2O_{(1)}$)					
,e	Orange		Yellow							
i) Wha	at is meant by o	lynamic equilil	orium?						(1m	k)
	te and explain	observation ma	de when a	few pelle	ets of pota	assium hy	/droxide	are adde	ed to the	κs)
										ζS
	-	s done using m	•			•				
concer	ntrations. The t	ime needed to	produce 50	cm ³ of th	e gas for	every ex	periment	was rec	orded in	l
the tab	ole below.									
Conc	. Of HCl in	2.0	1.75	1.50	1.25	1.00	0.75	0.50	0.25	
mol/I	Litre									

i) Complete the table above.

8.8

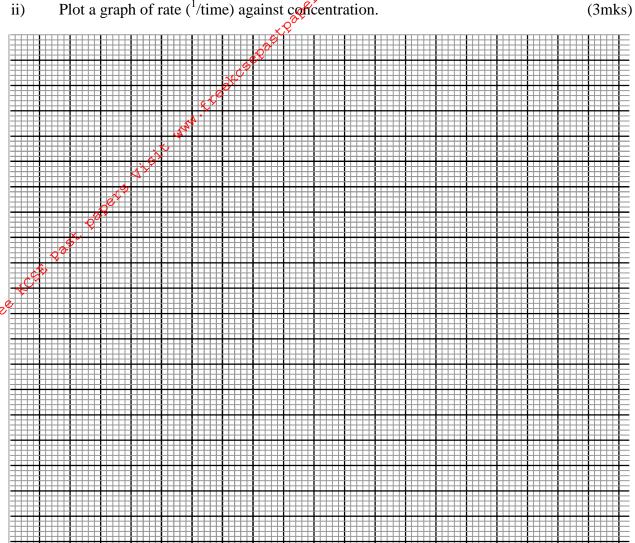
Time in Sec (s)

¹/_t Sec ⁻¹

(2mks)

70.0

10.0


11.7

13.5

17.5

22.7

35.5

iii) Determine from your graph the concentration needed to produce 50cm³ of hydrogen gas, when time is 15 seconds. (1mk)

Use the table below to answer the questions that follow. (The letters are not actual symbols of the 5. elements)

Element	Atomic number	M.P (⁰ C)
A	11	97.8
В	13	660
C	14	1410
D	17	-101
Е	19	63.7

	a) Write the electronic arrangement for the ions formed by the elements B and D	(2mks)
	a) Write the electronic arrangement for the ions formed by the elements B and D b) Select an element which is the selection of electronic arrangement for the ions formed by the elements B and D c) A more conductor of electronic arrangement for the ions formed by the elements B and D	
	b) Select an element which is	
	i) A poor conductor of electricity.	(1mk)
	67 [×]	
	ii) The most reactive non-metal.	(1mk)
	c) To which period of the periodic table does element E belong?	(1mk)
0	delement E losses its outermost electron more readily than A . Explain.	(2mks)
•	e) Use dots (•) and crosses (x) to represent the valence electrons and show the bonding in the	
	compound formed between element C and D.	(2mks)
	g) Write an equation for the reaction that takes place between element A and water.	
	h) Describe how a solid mixture of the sulphate of element E and lead (ii) sulphate can be separated into solid samples.	(3mks)
	separated into sorid samples.	
	An agreeus solution of gine sulphote is also traditional using also trades as als	
	An aqueous solution of zinc sulphate is electrolysed using platinum electrodes as shown in the below. D.C supply	ie set up
	Syringe	
	X cm ³ Syringe	
	Electrode B Electrode A	
	Zinc sulphate solution	

a) i) Write a	half equation for the reaction taking place at electrode A.	(1mk)
ii) Identify e	electrode B	(1mk)
iii) Explain (observation at electrode B if copper plate was used instead of \mathbf{j}	platinum electrode. (2mks)
h) 0.22 a of m	ກອງຂໍ້ມີ Q is deposited by electrolysis when a current of 0.06A fl	
	= 184, 1F = 96500c)	lows for 99 influtes.
i) Find the m	umber of moles of Q deposited.	(1mk)
Q.	e the value of n in the metallic ion \mathbf{Q}^{n+}	(3mks
c) Determine	e oxidation number of chlorine in ClO ₃	(1mk)
d) An iron sp	poon is to be electroplated with silver. Draw a labelled diagram	n to represent the set-up
that could	be used to carryout this process.	(2mks)
_	ment to determine the molar heat of reaction when magnesium	
=	magnesium powder were added to 25cm ³ of 1M copper (II) clure of solution increased by 43 ⁰ C.	hloride solution, the

i) Other than increase in temperature, state and explain the other observation made.

(Cu = 63.5 Mg = 24.0 specific heat capacity = 4.2 J/g/K)

(2mks)

b) Given the following reactions

$$2CO_{(g)} \longrightarrow 2CO_{(g)}$$

$$\Delta H = -220 \text{kJ}$$

$$2CO_{(g)} + O_{2(g)} \longrightarrow 2CO_{2(g)} \qquad \qquad \Delta H = \text{-} \ 566kJ$$

$$\Delta H = -566kJ$$

i) Using an energy cycle diagram, calculate the molar heat of formation of carbon (IV) oxide

(3mks)

FOR More Free Kesh Past pagers Visit und Lites Research

FOR More Free Kesh Past pagers Visit und Lites Research