\qquad
SCHOOL: \qquad DATE: \qquad
CANDIDATE'S SIGN.

121/2
MATHEMATICS
PAPER 2
JULY/AUGUST 2014
TIME: $\mathbf{2}^{1} / 2$ HOURS

KISUMU WEST DISTRICT JOINT EVALUATION EXAM

Kenya Certificate of Secondary Education (K.C.S.E)

MATHEMATICS

PAPER 2

INSTRUCTIONS TO THE CANDIDATES

- Write your name, school and index number in the spaces provided above
- This paper contains two sections; Section 1 and Section 11.
- Answer all the questions in section 1 and any five questions from Section 11
- All workings and answers must be written on the question paper in the spaces provided below each question.
- Marks may be given for correct working even if the answer is wrong.
- Calculators and KNEC Mathematical tables may be used EXCEPT where stated otherwise.
- Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.

FOR EXAMINERS'S USE ONLY

Section 1

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total
Marks																	

Section 1I

Question	17	18	19	20	21	22	13	24	Total
Marks									

GRAND TOTAL

This paper consists of 16 printed pages. Candidates should check carefully to ascertain that all the pages are printed as indicated

SECTIOAP50 MARKS

Answer all questions ingthis section in the spaces provided.

1. Use logarithm tables to evaluate
2. Make \mathbf{t} the subject of the formula

$$
x=\sqrt[3]{\frac{3 h(t-h)}{t}}
$$

3. Simplify and rationalize the expression giving your answer the expression giving your answer is the form of $\boldsymbol{a}+\boldsymbol{b} \sqrt{\boldsymbol{c}}$, where \mathbf{a}, \mathbf{b} and \mathbf{c} are constants

$$
\frac{11}{7-\sqrt{3}}^{-} \frac{5}{7+\sqrt{3}}
$$

4. The measurements of the radius and height 0 年f a cylinder are given as 8 cm and 9.5 cm respectively. Calculate the percentage error in the tolume of the cylinder.
5.

(a) Expand $(1-2 \boldsymbol{x})^{6}$ in ascending powers of \boldsymbol{x} upto \boldsymbol{x}^{3}.
(b) Hence evaluate (1.02) ${ }^{6}$ to 4 d.p.
6. (a) Construct $\triangle \mathbf{A B C}$ such that $\mathbf{A B}=6 \mathrm{~cm}, \mathbf{B C}=5 \mathrm{~cm}$ and $\mathbf{A C}=4 \mathrm{~cm}$.
(b) Construct the locus of point \mathbf{Q} inside the triangle $\mathbf{A B C}$ above such that the area of $\triangle A B Q$ is $6 \mathrm{~cm}^{2}$.
7. A pilot leaves point $\mathbf{T}\left(60^{\circ} \mathrm{S}, 10^{\circ} \mathrm{W}\right)$ and flies ofue East for a distance of 960 nm to point \mathbf{U}. Determine the position of \mathbf{U}.
8.

$$
\begin{equation*}
3 x^{2}+3 y^{2}-12 x+18 y-9=0 \tag{3mks}
\end{equation*}
$$

9. Quantity \mathbf{Q} partly varies as quantity \mathbf{R} and partly varies inversely as the square of \mathbf{R}. Given that $\mathbf{Q}=3$ when $\mathbf{R}=1$ and $\mathbf{Q}=5$ when $\mathbf{R}=1 / 2$
(i) Find an equation connecting \mathbf{Q} and \mathbf{R}.
(ii) Find the value of \mathbf{Q} when $\mathbf{R}=3 / 2$
10. Determine the integral values of \boldsymbol{x} that satisfy the following inequalities.

$$
-18-3 x \leq 2 x-1 / 2 \leq 20-3 x / 2
$$

11. ${ }^{4}$ The longest side of a right angled triangle is 25 cm and the two sides containing the right angle are $\boldsymbol{x} \mathrm{cm}$ and $\boldsymbol{y} \mathrm{cm}$. If one of the shorter sides exceeds the other by 17 cm , obtain two equations in \boldsymbol{x} and \boldsymbol{y} and solve them.
12. \quad If $\underset{\sim}{\mathbf{O A}}=\underset{\sim}{2} \mathbf{i}-\underset{\sim}{4 k}$ and $\underset{\sim}{\mathbf{O B}}=-\underset{\sim}{-2}+\underset{\sim}{\mathbf{j}} \underset{\sim}{\mathbf{k}}$. Find the magnitude of $\underset{\sim}{\mathbf{A} B}$.
13. In the fig. below line $\mathbf{C D}=4 \mathrm{~cm}$, line $\mathbf{D T}$ 造 8 cm and $\mathbf{A B}=6 \mathrm{~cm}$. AT and $\mathbf{C T}$ are straight lines meeting at point \mathbf{T}.

Find the value of \mathbf{y}.
14. In what ratio should grade \mathbf{P} of tea costing sh. 450 per kg be mixed with grade \mathbf{Q} of tea costing sh. 350 per kg so that a profit of 10% is made by selling the mixture at sh. 451 per kg ?
15. Find the values of θ between 0° and 180° such that $2 \cos 3 \theta=3 \sin 3 \theta$
16. Solve $8^{x}=4^{2 y+1}$ and $27^{2 x}=9^{y-3}$ giving your answers as an exact fraction.

SECTION B^{8} (50 MARKS)

Answer any five questionstin this section in the spaces provided.

17. Income tax is charged on annual iacome at the rates shown below.

11501 and above
10
事ingle relief ksh. 1056 per month.
Insurance relief ksh. 480 per month.
Mr. Onyango is single and earns sh. 13800. He lives in a company house for which he pays a nominal rent of ksh. 1500 per month. In addition to his salary he get a house allowance of ksh.

8000 per month and a non - taxable allowance of sh. 5000 per month.
Calculate
(b) Mr. Onyango's taxable income
(ii) Mr. Onyango's net tax per month in Kenya shillings.
(iii) Calculate Mr. Onyango's net monthly salary in Kenya shillings.
18. The table below shows the mark scored bystudents in a maths exam.

Class	30-39	40-49*	50-59	60-69	70-79	80-89
No. of students	3	$17{ }^{5}{ }^{\text {e }}$	27	23	8	2

(a) Draw a cumulative frequency curve and use your graph to find
(i) The median ${ }^{\circ}$
(ii) The qquartile deviation
(iii) Thề number of students who scored above 67.

(b) Use an assumed mean of 64.5 to calculate the standard deviation of the above data. (4mks)
19. An arithmetic progression has the first terge \mathbf{x} and the common difference as \mathbf{d},
(a) Write down in terms of \mathbf{x} and \mathbf{d}, the $3^{\text {rd }}, 9^{\text {th }}$ and $25^{\text {th }}$ terms of the progression.
(b) The progression is increasing and the $3^{\text {rd }}, 9^{\text {th }}$ and $25^{\text {th }}$ terms forms the first three consecutive fterms of a geometric series. If the sum of the $7^{\text {th }}$ and twice the $6^{\text {th }}$ term of the arithmetic progression is 78, calculate:
(i) The first term and the common difference of the A.P
(ii) The sum of the first nine terms of the A.P
20. The figure below shows a right pyramid wif 40 cm and the height of the base is $30 \mathrm{~m} . \mathbf{M}$ is the mid-point of $\mathbf{Q R}$ such that $\mathbf{P M}=29 \mathrm{~cm}$.

LCalculate:
(a) The vertical height of vertex \mathbf{P} from plane $\mathbf{A B C D}$.
(b) The angle between planes PQR and PST.
(c) The projection of the line RP on the plane QRST
(d) The angle between planes QRCD and ABCD
21. The manager of a hotel has enough moneyefor buy a total of 120 crates of soft drinks of two brands novida and alvaro. The number of nowifa crates has to be less than twice the number of alvaro crates. There must be at most 90 crax̂es of novida but at least 15 crates but not more than 60 crates of alvaro.
(a) Let \mathbf{x} be the number of noxida crates and \mathbf{y} be the number of alvaro crates
(i) Represent the information using inequalities.
(3mks)
(ai) Plot the graph of the above inequalities.
(3mks)

(b) The profit from a crate of novida is 75 and that of alvaro is 50 . Find the number of crates of each type that he should buy to make maximum profit.
(c) Due to inflation the profit on a crate of novida reduced by 20% and that on a crate of alvaro increased by 80%. Find the difference in the maximum profit that can be made by the hotel as a result of these changes.
22.

Given that $y=2 \sin 2 x$ and $y=3 \cos (x+$
(a) Complete the table below.

x	$0{ }^{0}$	20^{0}	40^{0}	(60)	80^{0}	100^{0}	120^{0}	140^{0}	160^{0}	180^{0}
$2 \sin x$	0		1.93才		0.68	-0.68	-1.73		-1.28	0.00
$3 \cos \left(x+45^{\circ}\right)$	2.12	1.27	s	-0.78		-2.46			-2.72	-2.12

(b) Use the data tro draw the graphs of $y=2 \sin 2 x$ and $y=3 \cos \left(x+45^{\circ}\right)$ for $0^{\circ} \leq \mathrm{x} \leq 180^{\circ}$. On the same $\varepsilon^{\varepsilon^{s}}$ axes.

(c) State the amplitude and period of each curve.
(d) Use the graph to solve the equation $2 \sin 2 x-3 \cos \left(x+45^{\circ}\right)=0$ for $0^{\circ} \leq x \leq 180^{\circ}(2 \mathrm{mks})$
23. (a) Given that $\mathbf{B C}$ is a tangent to the circle and that angle $\mathbf{A B C}=110^{\circ}$ and angle $\mathbf{C B D}=50^{\circ}$. Calculate giving reasons

Angle AED
(ii) Angle BAD
(iii) Angle DCB
(b) Given that $\mathbf{B D}=3 \mathrm{~cm}$ and $\mathbf{D C}=5 \mathrm{~cm}$. Find the area of triangle BDC.
24. On a given day, the probability that it is wind y^{5} is $3 / 5$. When it is windy, the probability that a kite is flown sticks on at tree is $3 / 4$, otherwise $i t$
(a) Represent this information ongat tree diagram.
(b) Find the probability that the:
(i) Kite is flown on a windy day.
(ii) Kite is flown
(iii) Kite is not flown

