\qquad
\qquad

232/1
PHYSICS
PAPER 1 (THEORY̌
JULY/AUGUST 2014
TIME: 2 HQÛRS

KISUMU WEST DISTRICT JOINT EVALUATION EXAM

Kenya Certificate of Secondary Education (K.C.S.E.)

PHYSICS

PAPER 1 (THEORY)

INSTRUCTIONS TO THE CANDIDATES:

- Write your name, school and index number in the spaces provided above.
- Answer all the questions both in section \boldsymbol{A} and \boldsymbol{B} in the spaces provided below each question
- All workings must be clearly shown; marks may be awarded for correct steps even if the answers are wrong.
- Mathematical tables and silent electronic calculators may be used.
- Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$

For Examiners' Use Only

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
Section A	$1-14$	25	
Section B	15	10	
	16	11	
	17	10	
	18	10	
	19	14	
	TOTAL	$\mathbf{8 0}$	

[^0] missing.

SECTIONQ 25 MARKS
 Answer alla wuestions in this section

1. The figure below shows a vernier cadiper scale.

Fig. 1

If the vernier galiners used had a zero error of -0.02 what is the actual reading of the scale.
2. $\kappa^{v^{e}} \mathrm{~A}$ body is projected vertically upwards from the top of a building. Assuming that it lands at the base of the building. Sketch the velocity time graph of the motion.
3. The stability of a body can be increased by increasing the base area and lowering its centre of gravity. State one way of lowering its centre of gravity.
4. When a mercury thermometer is used to measure the temperature of hot water, it is observed that the mercury level first drops before beginning to rise. Explain.
(2mks)
\qquad
\qquad
5. When a Bunsen burner is lit below wire gauze, it is noted that the flame initially burns below the gauze as shown in figure 2 below. After sometime the flame burns below as well as above the gauze

Explain this observation
\qquad
\qquad
6. Name one force that determines the shape of íaquid drop on a solid surface
7.
(a) What is surface tension?
(b) Figure 3 below shoms a funnel dipped into a liquid soap solution.

Explain what happens to the soap bubble when the funnel is removed.
\qquad
8. Using the idea of particles, explain why the pressure inside the tyre is increased when it is pumped up.
\qquad
\qquad
9. A trolley of mass 0.5 kg moving with a velocity of $1.2 \mathrm{~ms}^{-1}$ collides inelastically with a second trolley of mass 1.5 kg moving in the same direction with a velocity of $0.2 \mathrm{~ms}^{-1}$.
(a) What is an inelastic collision?
(b) Determine the velocity of the trolleys after collision.
10. Highlight one fact which shows that heat from the sun does not reach the earth surface by convection.
(1mk)
11. Three identical springs each of spring constant $4.5 \mathrm{~N} / \mathrm{m}$ and weight 0.5 N are used to support a load as shown in figure 4 below.
Determine the total extension of the system

Figure 4
12. State two reasons why mercury is preferred aed barometric liquid and not water
\qquad
\qquad
13. Figure 5 below shows a unifoom meter rule balancing when a mass of 200 g is hung at one end. Determine the tension \mathbf{T} inthe string

14. Water tanks in houses are erected as high as possible. Explain
\qquad

SECTION B (55 MARKS)

Answer all questions in this section

15. (a) What is work as defined in physics?
\qquad
\qquad
(b) A pulley system has two pulleys on the lower block and one pulley on the upper block. In order to raise the load of 6 N , an effort of 2 N is applied.
(i) Draw a sketch to show the pulley system.
(ii) Determine the efficiency of the pulley system.
(iii) If the lower block weighs 0.4 N , deterafine the frictional force which opposes the motion
16. (a) A liquiéart $80^{\circ} \mathrm{C}$ in a cup was allowed to cool for 20 minutes. State two factors that determine the final temperature.
\qquad
(b) What is meant by specific latent heat of vaporization?
(c) In an experiment to determine the specific latent heat of vaporization \mathbf{L} of water, steam at $100^{\circ} \mathrm{C}$ was passed into water contained in a well lagged copper calorimeter. The following measurements were made.

Mass of calorimeter $=80 \mathrm{~g}$
Initial mass of water $=70 \mathrm{~g}$
Initial temperature of water $=5^{0} \mathrm{C}$
Final mass of calorimeter + water + condensed steam $=156 \mathrm{~g}$
Final temperature of mixture $=30^{\circ} \mathrm{C}$
Specific heat capacity of water $=4200 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$ and specific heat capacity for copper $=390 \mathrm{~J} / \mathrm{Kg}^{-1} \mathrm{~K}^{-1}$
(i) Determine the:
(i) Mass of condensed steam
(ii) Heat gained by the calorimeter and water
(iii) Given that \mathbf{L}. is the specific latent heaf of vaporization of steam;
(i) Write an expression for the heat given out by steam
(ii) Determine the value of \mathbf{L}
17. . $_{\varepsilon^{8} 8^{8}}$ (a) The figure 6 below shows a stone of mass 450 g rotated in a vertical circle at 3 revolutions per second. If the string has a length of 1.5 m , determine:

Figure 6
(i) The linear velocity
(ii) The tension of the string at position \mathbf{A}
(b) A stone is whirled with uniform speed in horizontal circle having radius of 10 cm . It takes the stone 10 seconds to describe an arc of length 4 cm . Determine:
(i) The angular velocity ω
(ii) The period \mathbf{T}
18. (a) State the law of floatation
č
\qquad
\qquad
(b) Figure 7 shows a piece of cork held with a light thread attached to the bottom of a beaker. The beaker is filled with water.

Figure 7
(i) Indicate and label on the diagram the forces acting on the cork
(ii) Write an expression showing the relationship between the forces
(c) A solid displaces $8.5 \mathrm{~cm}^{3}$ of liquid when floating on a certain liquid and $11.5 \mathrm{~cm}^{3}$ when fully submerged in the liquid. The density of the solid is $0.8 \mathrm{~g} / \mathrm{cm}^{3}$, determine:-
(i) Up thrust on the solid when floating
(ii) Density of the liquid
19.
(a) Define impulse in terms of momentum
\qquad
\qquad
(b) For a particle of mass \mathbf{m} which is initially moving vertically downward with velocity \mathbf{u}, obtain an expression for changes in kinetic energy after;
(i) It has moved freely under gravity for time \mathbf{t},
\qquad
\qquad
\qquad
(ii) It has moved freely under gravity f a vertical distance \mathbf{S}
\qquad
(c) A lead ball is placed on the surface of viscous oil and released.
(i) State the three forees acting on the ball as it falls through the oil
\qquad
\qquad
\qquad
\qquad
(ii) State which forces vary during the fall and explain why the variation.
(iii) What is meant by the term terminal velocity of the ball?
(iv) Sketch a graph showing the variation of the displacement of the ball with time from when it was released.

[^0]: This paper consists of 8 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are

