NAME:	OE TO	INDEX NO.
	*x5gx	DATE
	. Kr. te it	
	and Ete	
	nin . × .	

232/2

PHYSICS

PAPER 2 (THEORY)

JULY /AUGUST 2014

TIME: 2 HOURS

KISUMU WEST DISTRICT JOINT EVALUATION EXAM

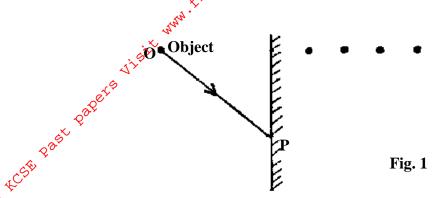
Kenya Certificate of Secondary Education (K.C.S.E.)

PHYSICS

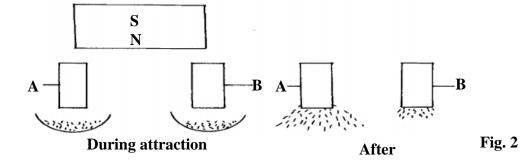
PAPER 2 (THEORY)

INSTRUCTIONS TO CANDIDATES:

- Write your name, school and index number in the spaces provided above
- This paper consists of two sections, A and B.
- Answer **all** questions in section **A** and **B** in the spaces provided.
- All working must be clearly shown in the spaces provided.
- Scientific calculators and KNEC Mathematical tables may be used.

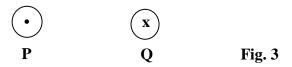

For Examiners' Use Only

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
A	1-14	25	
В	15	9	
	16	12	
	17	13	
	18	10	
	19	11	
	TOTAL	80	


This paper consists of 12 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are Missing

Answer all questions in this section

1. Figure 1 below shows an object **O** placed in front of a plane mirror. A ray of light is drawn coming object **O** and striking the mirror **P**. After striking the mirror, the ray of light is reflected.


- Which of the four dots represent correct position of the image of \mathbf{O} ? Label this dot \mathbf{Q} (1mk)
- (ii) By drawing a line on the diagram above to represent the reflected ray at \mathbf{P} , mark the angle of reflection and label it \mathbf{r} . (1mk)
- 2. A charged conductor is slowly brought near the cap of a positively charged electroscope. The leaf first collapses and then diverges. State the charge on the conductor (1mk)
- 3. Give a reason why it is necessary to leave the caps of the cells open when charging an accumulator (1mk
- 4. Figure 2 below shows a simple experiment using a permanent magnet and two metal bars **A** and **B** Put close to the iron filings.

State with a reason which bar is made from a soft magnetic material.

(2mks)

5. Figure 3 below shows two parallel current carrying conductors **P** and **Q** placed close to one another. Current flows in the opposite directions.

Sketch on the figure the magnetic field pattern formed by the two conductors.

(1mk)

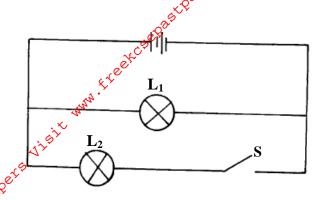


Fig.4

- (a) Using an arrow, indicate on the diagram above the direction of the convectional current (1mk)
- (b) State the effect if any, of closing switch S on L_1

(1mk)

7. Eigure 5 below shows a ray of light incident on water-kerosene interphase.

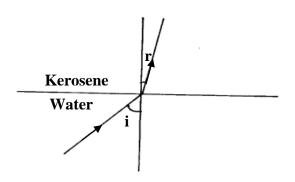


Fig.5

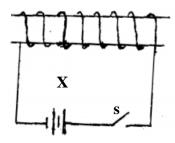
State which one of the two liquids has a higher absolute refractive index.

(1mk)

8. The table in **figure 6** below shows part of the electromagnetic spectrum in order of decreasing wavelength

A	В	INFRA RED	VISIBLE	С	D
		RADIATION	LIGHT		

Figure 6


(a) How are waves C produced?

(1mk)

(b) State one use of the wave **D**

(1mk)

9. Figure 7 below shows two solenoids, **X** and **Y** close to each other.

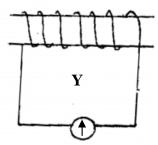


Fig.7

(a) Name the process by which current is caused in **Y** by closing the switch **S**.

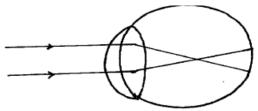
(1mk)

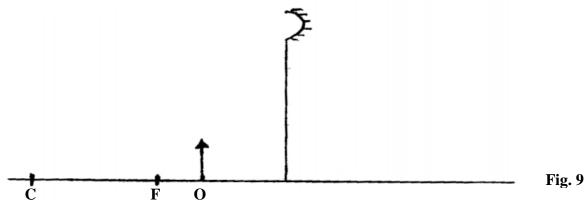
(b) Show on the diagram above the direction of current in **Y** as switch **S** closes. Use an arrow.

10. A house has a lighting circuit operated from a 240V mains supply. Four bulbs rated 40W 240V and six bulbs rated 100W 240V are switched on for 5 hours a day. Determine the monthly bill for the consumer given that the cost of electricity is at shs. 5.50 per unit.

(Take 1 month = 30 days and the standing charge is sh. 150) (3mks)

- 11., State **two** properties of X-rays similar to those of visible light. (2mks)
- 12. Explain why the tube of a cathode ray oscilloscope is made of thick glass walls. (2mks)
- 13. (a) Define the term work function (1mk)
 - (c) Explain how the intensity of radiation affects the photo-electric effect (1mk)
- 14. Figure below shows an eye defect



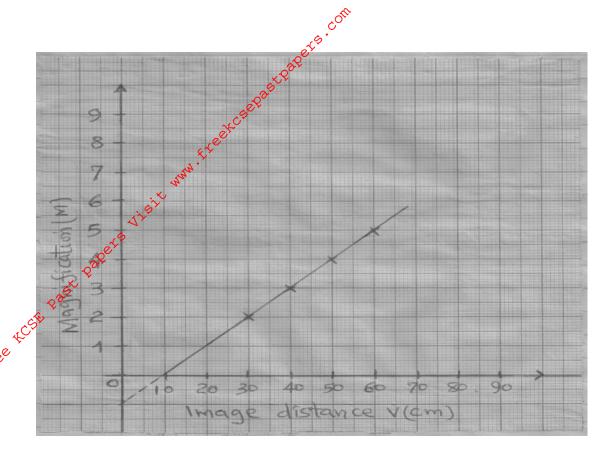

Fig 8

Use a ray diagram to show how the defect above could be corrected.

(2mks)

SECTION B - (55 MARKS)

15. (a) An object **O** stands on the principal axis of a concave mirror as shown in figure 9 below.



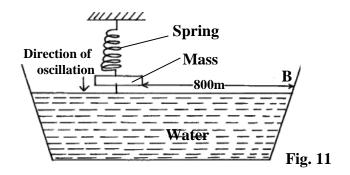
- (i) By drawing suitable rays, show the position of the image
- (2mks)

(ii) Determine the magnification of the image formed

- (2mks)
- (b) In an experiment to determine the focal length of a concave mirror, a group of form two students collected some data and used the results to plot the graph shown in figure **10** below.

©Kisumu West District 2014 Form Four 4 Physics 232/2

Using the graph above, determine:


(i) The object position when the image position is 45 cm (2mks)

(ii) Slope of the graph. (2mks)

(iii) The focal length of the mirror given

$$\mathbf{m} = \frac{\mathbf{v}}{\mathbf{f}} - 1 \tag{1mk}$$

16. (a) Students set up a mass attached to a spring such that when it oscillates it taps on water surfacein a wide shallow tank as in figure 11 below.

The students measured time for 20 oscillations and found that the mass takes 36 seconds. Determine:

- (i) The periodic time of the mass (2mks)
- (ii) The frequency of the waves produced on the water surface (1mk)
- (iii) The speed of the waves if the students counted four ripples between the mass and end **B** of the tank (3mks)
- (b) State any **two** factors that would increase the speed of sound in air (2mks)

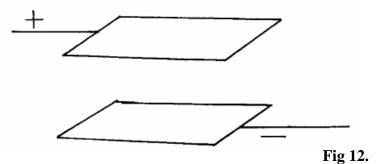
- (c) An echo sounder of a ship received the reflected waves from a sea bed after 0.20s.
 - (i) Determine the depth of the sea bed if the velocity of sound in water is 1450m/s

(2mks)


Jisi^X

(ii) When the ship above passes over a sunken reef, the echo sounder receives an echo after 0.16s. Determine the height of the sunken reef (2mks)

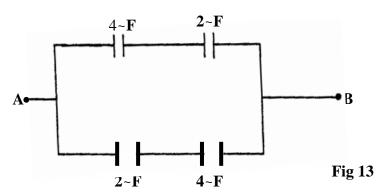
105% Rasi


17. (a) (i)Define capacitance of a capacitor

(1mk)

(ii) Figure 12 below shows a pair of parallel plates of a capacitor connected to a battery.

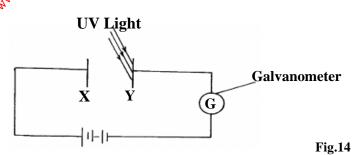
The upper plate is displaced slightly to the left.



State with a reason the effect of this movement on the capacitance

(2mks)

iii) The circuit diagram in figure 13 below shows four capacitors connected between two points ${\bf A}$


and ${\bf B}$

©Kisumu West District 2014 Form Four 6 Physics 232/2

czeekce

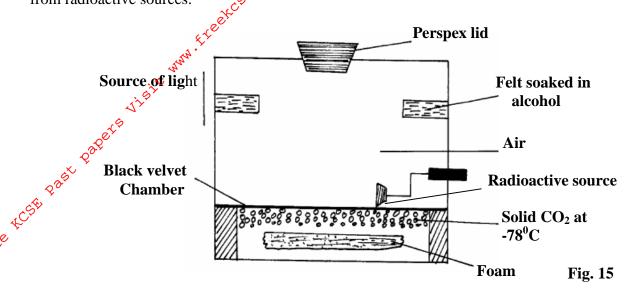
(d) Figure 14 below shows $\dot{\mathbf{x}}$ inetal plates \mathbf{X} and \mathbf{Y} . Metal \mathbf{Y} is illustrated by ultra-violet radiation.

For More Free Acon Past Papers
(i) State the

(i) State the observation made on the galvanometer		
(ii) Explain the observation in (i) above	(2mks)	

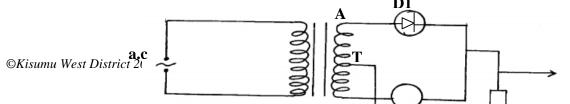
radiation that can cause photo electrons to be emitted from its surface. $C = 3 \times 10^8 \text{ m/s}, h = 6.63 \times 10^{-34} \text{ Js}$ $1 \text{ eV} = 1.6 \times 10^{-19} \text{J}$ (4mks)

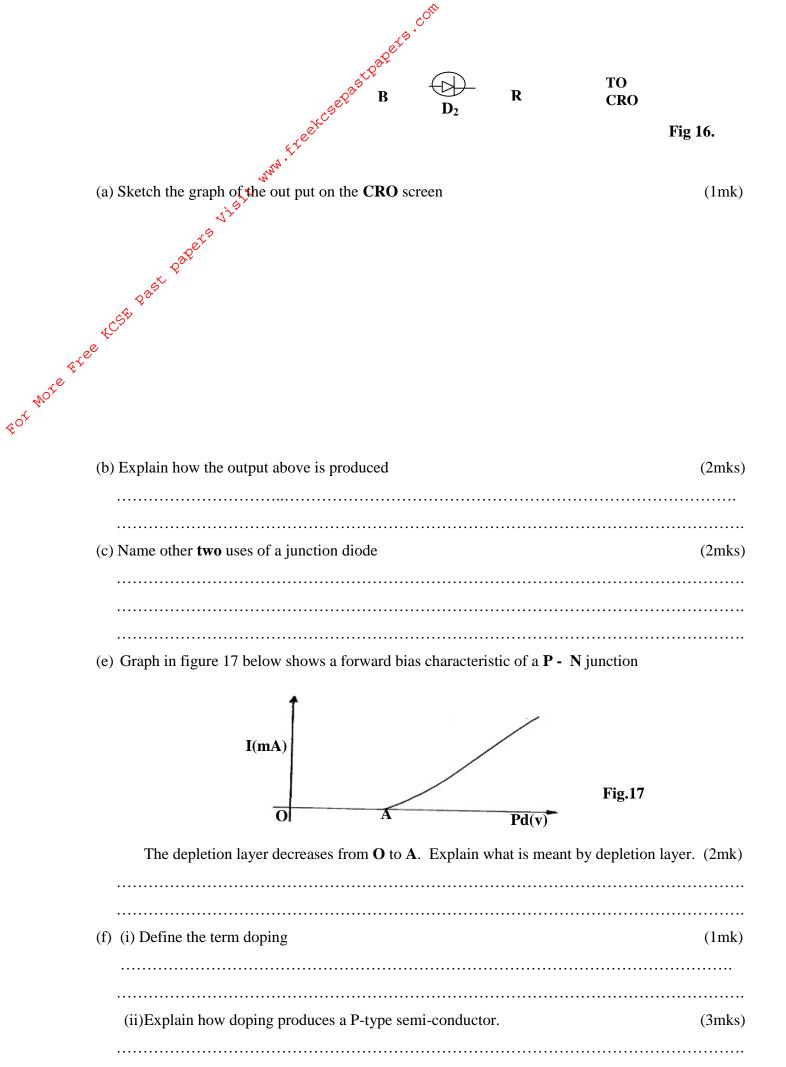
(iii) A material has a work function of 2.0eV. Determine the largest wavelength of incident


18. (a) Define Radioactivity

(1mk)

(b) An element ${\bf R}$ decays by giving off an alpha particle. Complete the equation below showing the valves of ${\bf a}$ and ${\bf b}$ (1mk)


$${}^{236}_{72}R = {}^{a}_{b}V + {}^{4}_{2}H_{e}$$


(c) Figure 15 below shows the features of a diffusion cloud chamber used for detecting radiations from radioactive sources.

(i) State the property of alcohol that makes it suitable for use in the chamber	(1mk)
(ii) State the function of the Perspex lid.	(1mk)
(iii) Explain why the base velvet chamber is painted black	(1mk)
(iv) Explain how the radiation from the radioactive source is detected in the chamber.	(4mks)
(v) State one advantage of the cloud chamber over a charged leaf electroscope when used as detectors of radiations	(1mk)

19. A student connected a circuit as shown in figure 16 below hoping to produce a rectified out put

		res. com	
	a to the second		
	ix mun. Etee		
oater's vie	'		
ACSE Dagx ,			
note éree			
More Free Kish Past Papers Vie			

©Kisumu West District 2014 Form Four 10 Physics 232/2