NAME:

SCHOOL: \qquad
CANDIDATE'S SIGN. \qquad

JULY IAUGESTT 2014

TIME: $2 \frac{10}{21 / 2}$ HOURS

KISUMU WEST DISTRICT JOINT EVALUATION EXAM

Kenya Certificate of Secondary Education (K.C.S.E.)

PHYSICS

PAPER 3

INSTRUCTIONS TO CANDIDATES:

- Write your name and index number in the spaces provided above.
- Sign and write the date of the examination in the spaces provided above.
- You are supposed to spend the first 15 minutes of the $21 / 2$ hours allowed for this paper reading the whole paper carefully.
- Marks are given for a clear record of the observations actually made, their suitability, accuracy and the use made of them.

For Examiners' Use Only

Question 1

[^0]
1. This question consists of two parts \boldsymbol{A} and B attempt both parts

PART A
You are provided with the following:
two pieces of wooden blocks
a retort stand, boss and clamp
a glass marble
a piece of cgtton thread
a squarefoiece of polythene paper
a hatf-metre rule
20 grammes metal mass
some water
a 250 ml beaker
some tissue paper

Proceed as follows:

(a) Cut two pieces of cotton thread measuring 60 cm and 30 cm respectively. Use the threads to make two loops. Suspend the half-metre rule freely at its centre of gravity, \mathbf{P} using the longer loop.

Fig. 1 (a)

Fig. 1(b)

(b) Suspend the glass marble using thread and the square polythene paper at a distance $\mathbf{X}_{0}=$ 15 cm from the point of suspension, \mathbf{P}. Also use the shorter thread loop to suspend the 20 g metal mass on the opposite side and adjust its position till the half-metre rule is horizontal as in figure 1(a) above. Reeord the corresponding distance $\mathbf{X}_{\mathbf{1}}$ of the 20 g mass from \mathbf{P}
(c) Fill dfle beaker with water up to about three quarters capacity. Maintain the distance $\mathbf{X}_{\mathbf{0}}$施variant as you immerse the glass marble in water and slide the thread holding the 20 g metal mass, till the half-metre rule is horizontal again. Note the new corresponding distance $\mathbf{X}_{\mathbf{2}}$ (i.e distance between point of suspension of 20 g mass and \mathbf{P})

$$
\begin{equation*}
X_{2}= \tag{1mk}
\end{equation*}
$$

\qquad cm
(d) Repeat the procedure in (b) and (c) for increased values of \mathbf{X}_{0} as given in table 1 below.

NB:- After every attempt, wipe the polythene paper and marble dry with the tissue paper provided.

- Ensure this experiment is done in a draught free area.

(e) Complete the table 1

Table 1

Distance of marble in air $\mathbf{X}_{\mathbf{0}}(\mathrm{cm})$	$\mathbf{1 5}$	$\mathbf{1 7}$	$\mathbf{1 9}$	$\mathbf{2 1}$	$\mathbf{2 3}$	$\mathbf{2 4 . 5}$
Distance of 20g metal mass, $\mathbf{X}_{\mathbf{1}}(\mathrm{cm})$						
Distance of 20g metal mass, $\mathbf{X}_{\mathbf{2}}(\mathrm{cm})$ When marble is in water						
$\mathbf{X}_{\mathbf{1}}-\mathbf{X}_{\mathbf{2}}(\mathrm{cm})$						

(f) On the grid provided, plot a graph of $\mathbf{X}_{\mathbf{1}}-\mathbf{X}_{\mathbf{2}}$ (y-axis) against $\mathbf{X}_{\mathbf{1}}$

(g) Determine the slopes, \mathbf{S} of the graph

PART B

You are provided with the following:

- vernier callipers
- glass marble

Proceed as follows

h) Using the vernier callipers, measure the diameter of the glass marble
$1^{\text {st }}$ attempt; diameter $\mathbf{D}_{\mathbf{1}}=$
$2^{\text {nd }}$ attempt (after spinning the glass marble)
Diameter $\mathbf{D}_{\mathbf{2}}=$
cm

Determine the value of \mathbf{D} in the expression:

$$
\begin{aligned}
& \mathrm{D}=\underline{\mathrm{D}_{1}+\mathrm{D}_{2}} \\
& 2 \\
& =
\end{aligned}
$$

(i) Find the volume of the glass marble in m^{3}

$$
\text { Volume }=
$$

This question consists of two parts; A and B

Attempt both parts and attach the two plain papers used in this question
2. $\hat{c}^{\varepsilon^{8}}$ PART A

You are provided with the following:
a soft board

- a white plain paper
- \quad Four (4) optical pins
- a mounted plane mirror labeled XY
- \quad Some plasticine (or 4 drawing pins)

Proceed as follows:

(a) Use small lumps of plasticine (or drawing pins) to stick the white plain-paper provided onto the soft board and draw a straight line MNem the paper.

- Draw another straight line $\mathbf{M}^{\prime} \mathbf{N}^{\prime}$, which intercepts the line $\mathbf{M N}$ at point \mathbf{O}.
- The two lines MN and $\mathbf{M}^{\prime} \mathbf{N}$ ' make a vertical acute angle of 25° with each other at \mathbf{O}
- Draw a third line $\hat{\mathbf{O}}^{\boldsymbol{S}}$ which makes an angle of 40° with $\mathbf{O M}$. Fix two pins; $\mathbf{P}_{\mathbf{1}}$ and \mathbf{P}_{2} along the line OT. OEF ${ }^{t^{5}}$ is representing the approaching ray of light. See figure 2(a)
(b) Place the plane mirror XY lengthwise along line MN. Fix pins $\mathbf{P}_{\mathbf{3}}$ and \mathbf{P}_{4} in line with the images of $\mathbf{P}_{\mathbf{1}}$ and \mathbf{P}_{2} as hey appear through the mirror.
-dremove the pins \mathbf{P}_{3} and \mathbf{P}_{4}, then draw line $\mathbf{O P}_{3} \mathbf{P}_{4}$.
- Line $\mathbf{O P}_{3} \mathbf{P}_{4}$ is representing the reflected ray of light.
(c) (i) Rotate the plane mirror $\mathbf{X Y}$ through the angle of 25° about point \mathbf{O} such that it lies along the line

M'N'.

- Using two pins again, repeat step (b) above to obtain the new position of the reflected ray. Label the marks of the two pins \mathbf{P}_{5} and \mathbf{P}_{6} respectively.
- Line $\mathbf{O P}_{5} \mathbf{P}_{\mathbf{6}}$ is representing a new position of the reflected ray after rotation.

See figure 2 (b).

(ii) Measure the size of a cute angle \propto between the lines $\mathbf{O P}_{\mathbf{3}} \mathbf{P}_{\mathbf{4}}$ and $\mathbf{O P}_{\mathbf{5}} \mathbf{P}_{\mathbf{6}}$

Angle $\propto=$ \qquad (1mk)

PART B

You are provided with the following:

- a soft board
- a white plain paper
- 4 optical pins
- $\quad 4$ drawing pins or (some plasticine)
- a mounted plane mirror labelled $\mathbf{X Y}$
(d) (i) Proceed as follows

Figure 3

Use small lumps of plasticine (or drawing pins) to sticick the white plain paper onto the soft board. (Use the second paper provided).

- Draw a straight line MN
- Draw another straight line $\mathbf{Q N}$ which is perpendicular to $\mathbf{M N}$ at \mathbf{O}. Line $\mathbf{O N}$ is representing the normal, see figure 3 aboive.
Draw a third line OT whict intercepts $\mathbf{M N}$ at \mathbf{O} and makes acute angle $\quad \mathbf{1}=10^{\circ}$ with the normal to the left.
Fix pins $\mathbf{P}_{\mathbf{1}}$ and \mathbf{P}_{2} onto line OT. Line OT is representing the approaching ray of light.
Measure the acute angle $\quad \mathbf{1}=10^{\circ}$ between the approaching ray and the normal.
- $\quad \mathrm{Pl} \mathrm{A}_{\mathrm{c}} \mathrm{e}$ the plane mirror XY lengthwise along the line MN and observe from the opposite side of the normal to locate the images of $\mathbf{P}_{\mathbf{1}}$ and $\mathbf{P}_{\mathbf{2}}$ as they appear in the mirror
Fix pins \mathbf{P}_{3} and $\mathbf{P}_{\mathbf{4}}$ such that they are in line with the images of $\mathbf{P}_{\mathbf{1}}$ and $\mathbf{P}_{\mathbf{2}}$ as they appear in the mirror.
(ii) Remove the mirror, join \mathbf{P}_{3} and $\mathbf{P}_{\mathbf{4}}$ and produce it to meet at \mathbf{O} so as to obtain the reflected ray.

Measure angle ${ }_{2}$, the angle between the normal, $\mathbf{P O}$ and $\mathbf{O P}_{3} \mathbf{P}_{4}$
Angle $2=$
(e) Repeat step (d) above for the values of $\quad \mathbf{1}$ given in table 2.
i) Complete table 2

Table 2

$\mathbf{1}$	10	20	30	40	45	55
$\mathbf{2}$						
$\operatorname{Cos} \mathbf{1}$						
$\operatorname{Cos} 2$						

(ii) Plot a graph of $\cos \quad 2$ (y-axis) against $\cos \quad 1$

[^0]: This paper consists of 8 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

