Name $\qquad$

121/1
MATHEMATICS

## PAPER 2

JULY/AUGUST 2014
2112 HOURS

Admission No. $\qquad$ Class $\qquad$
Candidate's signature $\qquad$
Date $\qquad$ lass

## MAKINDU DISTRICT INTER - SECONDARY SCHOOLS EXAMINATIONS

## $Q^{2}$ <br> PRE-KEN <br> MATHEMATICS

dáaper 2
JULY/AUGUST 2014
$21 / 2$ HOURS

## INSTRUCTIONS TO DANDIDATES

1. Write your name, index number and class in the spaces provided.
2. Sign and write date of the of the examination in the spaces provided.
3. The paper contains two sections: Section I and II
4. Answer ALL questions in section I and STRICTLY FIVE questions from section II.
5. All working and answers must be written on the question paper in the spaces provided below each question.
6. Show all the steps in your calculations, giving you're your answers at each stage in the spaces below each question.
7. Marks may be awarded for correct working even if the answer is wrong.
8. Non-programmable silent electronic calculators and KNEC mathematical tables may be used except where stated otherwise.

## FOR EXAMINER'S USE ONLY

## SECTION 1

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | TOTAL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## SECTION II

| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | TOTAL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |

GRAND TOTAL
© 2014, Makindu district inter - secondary schools examination

This paper consists of $\mathbf{1 6}$ printed pages. Candidates should check to ensure that all pages are printed as indicated and no questions are missing.

## SECTION 1 (50 MARKS): ANSWER ${ }^{\text {CáLL }}$ OUESTIONS IN THE SECTION.

1. Use logarithms to evaluate
2. Form the quadratic equation whose roots are $x=-\frac{5}{3}$ and $x=1$
(2 Marks)
3. $W$ varies directly as the cube of $x$ and inversely as $y$. Find $W$ in terms of $x$ and $y$ given that $W=80$ when $\mathrm{x}=2$ and $\mathrm{y}=5$.
(2 Marks)
4. A cold water tap can fill a bath in 10 minutes whinfe a hot water tap can fill it in 8 minutes. The drainage pipe can empty it in 5 minutes. The cold watergand hot water taps are opened for 4 minutes. After four minutes all the three taps are opened. Find $\begin{aligned} & \text { row w long it takes to fill the bath. }\end{aligned}$
5. Object $A$ of area $10 \mathrm{~cm}^{2}$ is mapped onto its image $B$ of area $60 \mathrm{~cm}^{2}$ by a transformation. Whose matrix is given by $\mathrm{p}=\left(\begin{array}{cc}x & 4 \\ 3 & x+3\end{array}\right)$. Find the positive values of x
(3 Marks)
6. Make P the subject of the formula in $\mathrm{L}=\frac{2}{3} \sqrt{\frac{x^{2}-P T}{y}}$
(3 Marks)
7. (a) Expand the expression $\left(1+\frac{1}{2} x\right)^{5}$ in ascendiong order powers of $x$, leaving the coefficients as fractions in their simplest form.
(2 Marks)
(b) Use the first three terms of the expansion in (a) above to estimate the value of $(1.05)^{5}$
(2 Marks)
8. By rounding each number to the nearest tens, approximate the value of $\frac{2454 \times 396}{66}$

Hence, calculate the percentage error arising from this approximation to 4 significant figures. (3 Marks)
9. Without using a calculator or mathematical table8, express $\frac{\sqrt{3}}{1-\operatorname{Cos} 30^{\circ}}$ in surd form and simplify (3 Marks)
10. Kasyoka and Kyalo working together can do a piece of work in 6 days. Kasyoka, working alone takes 5 days longer than Kyalo. How many days does it take Kyalo to do the work alone?
11. The second and fifth terms of a geometric progression are 16 and 2 respectively. Determine the common ratio and the first term.
12. A particle moves along a straight line AB . Its velo $\hat{6}$ city V metres per second after t seconds is given by $\mathrm{v}=\mathrm{t}^{2}-3 \mathrm{t}+5$
Its distance from $A$ at the time $t=1$ is 6 metres.
Determine its distance from A when $t=3^{2}$

13. On the triangle PQR , draw a circle touching $\mathrm{PR}, \mathrm{QP}$ produced and QR produced.

14. Two containers have base area of $750 \mathrm{~cm}^{2}$ and $120 \mathrm{~cm}^{2}$ respectively. Calculate the volume of the larger container in litres given that the volume of the 8 maller container is $400 \mathrm{~cm}^{3}$.
(3 Marks)
${ }^{8}$
5. Solve for x in the equation
$2 \operatorname{Sin}^{2} \mathrm{x}-1=\operatorname{Cos}^{2} \mathrm{x}+\operatorname{Sin} \mathrm{x}$, where $0^{\circ} \leq \mathrm{x} \leq 360^{\circ}$.
(4 Marks)
16. Find the radius and the coordinate of the centre of the circle whose equation is $2 x^{2}+2 y^{2}-3 x+2 y+\frac{1}{2}=0$

## SECTION II (50 MARKS): ANSWER FIVE QUESTIONS IN THIS SECTION.

17. A bag contains 5 red, 4 white and 3 blue beads? Two beads are selected at random.
(a) Draw a tree diagram and list the probabisity space.
(b) Find the probability that (i) The last bead selected is red.
(ii) The beads selected were of the same colour
(iii) At least one of the selected beads is blue
18. The figure below shows a circle centre O in whieff line QOT is a diameter. Angle QTP $=46^{\circ}$, angle $\mathrm{TQR}=75^{\circ}$ and angle $\mathrm{SRT}=38^{\circ}$, PTU RSU are straight lines.


Determine the fodiowing, giving reasons in each case:
(a) angle RST
(b) angle SUT
(c) angle PST
(2 Marks)
(d) obtuse angle ROT
(2 Marks)
(e) angle SQT
(2 Marks)
19. $P, Q$ and $R$ are three villages such that $P Q=10 \mathrm{kmi}, Q R=8 \mathrm{~km}$ and $P R=4 \mathrm{~km}$ where $P Q, Q R$ and $P R$ are connecting roads.
(a) Using a scale of 1 cm rep 1 km , locate the relative positions of the three villages
(b) A water tank T is to be located at a point equidistant from the three villages. By construction locate the water tank T and measure its distance from R .
(c) Determine the shortest distance from T to the road PQ by construction
(d) Determine the area enclosed by the roads $\mathrm{PQ}, \mathrm{QR}$ and PR by calculation
20. For a sample of 100 bulbs, the time taken for eagf bulb to burn was recorded. The table below shows the result of the measurements.

| Time (in hours) | 15-19 | 20-24 | 25-29 | 30-3420 | 35-39 | 40-44 | 45-49 | 50-54 | 55-59 | 60-64 | 65-69 | 70-74 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of bulbs | 6 | 10 | 9 | ${ }_{1} \mathrm{c}^{\text {c }}{ }^{\text {e }}$ | 7 | 11 | 15 | 13 | 8 | 7 | 5 | 4 |

(a) Using an assumed mean of 42, cafculate
(i) the actual mean of distribution
(b) Calculate the quartile deviation
21. A plane leaves an airport $\mathrm{P}\left(10^{\circ} \mathrm{S}, 62^{\circ} \mathrm{E}\right)$ and flies dau north at $800 \mathrm{~km} / \mathrm{h}$.
(a) Find its position after 2 hours
(b) The plane turns and flies at the same speed due west. It reaches longitude $\mathrm{Q}, 12^{0} \mathrm{~W}$.
(i) Find the distance it has traveled in nautical miles.
(ii) Find the time it has taken (Take $\pi=\frac{22}{7}$, the radius of the earth to be 6370 km and 1 nautical mile to be 1.853 km )
(c) If the local time at P was 1300 hours when it ${ }^{\text {e }}$ eached Q , find the local time at Q when it landed at Q
22. PQRSV is a right pyramid on a horizontal square base of side 10 cm . The slant edges are all 8 cm long. Calculate

(a) The height of the pyramid
(2 Marks)
(b) The angle between
(i) Line VP and the base PQRS
(ii) Line ${ }^{*} \mathrm{VP}$ and line RS
(iii) Planes VPQ and the base PQRS
(2 Marks)
(c) Volume of the pyramid
23. Complete the table below for the functions $y=\sin ^{2} 3 \theta$ and $y=2 \operatorname{Cos}\left(\theta+40^{0}\right)$

| $\theta^{0}$ | $0^{0}$ | $10^{0}$ | $20^{0}$ | 369 | $40^{0}$ | $50^{0}$ | $60^{0}$ | $70^{0}$ | $80^{0}$ | $90^{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3 \operatorname{Sin} 3 \theta$ | 0 | 1.50 |  | 33.00 |  |  | 0.00 |  |  | -3.0 |
| $2 \operatorname{Cos}\left(\theta+40^{0}\right)$ | 1.53 | 1.29 | $e^{e^{4}}$ |  | 0.35 |  |  | -0.69 |  | -1.29 |

(a) On the grid provided, draw the graphs of $Y=3 \operatorname{Sin} 3 \theta$ and $y=2 \operatorname{Cos}\left(\theta+40^{\circ}\right)$ on the same axis.

Take 1 cm to represent $\mathcal{1} 0^{\circ}$ on the x -axis and 4 cm to represent 2 unit on the y - axis. ( 5 marks)

(b) From the graph find the roots of the equation.
(i) $\frac{3}{4} \operatorname{Sin} 3 \theta=\frac{1}{2} \operatorname{Cos}\left(\theta+40^{\circ}\right)$
(2 Marks)
(ii) $2 \operatorname{Cos}\left(0+40^{\circ}\right)=0$ in the range $0 \leq \theta \leq 9 \theta^{\circ}$
24. The gradient function of a curve is given by the expression $2 x+1$. If the curve passes through the point $(-4,6)$
(a) Find:

## (i) The equation of the curve

(ii) The values of x , at which the curve cuts the x -axis
(b) Determine the area enclosed by the curve and the x -axis

