co ^{re}	
Name:	Index No
School:	Candidate's Sign
Date:	
way.	

APER 2 (Theory) MARCH/APRIL 2015 TIME: 2 HOURS Pas

FOT NOTE Free ACSE. **CROSS COUNTRY EXAMS 2015**

Kenya Certificate of Secondary Education (K.C.S.E.)

PHYSICS PAPER 2 **TIME: 2 HOURS**

INSTRUCTIONS TO THE CANDIDATES:

- Write your name and index number in the spaces provided above •
- This paper consists of two sections A and B.
- Answer all questions in section A and B in the spaces provided.
- All working must be clearly shown in the spaces provided.
- KNEC mathematical tables and silent non-programmable electronic calculators may be used.

For Examiners' Use Only

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
А	1-12	25	
В	13	10	
	14	09	
	15	12	
	16	07	
	17	08	
	18	09	
	TOTAL	80	

This paper consists of 11 printed pages. Candidates should check to astertain that all pages are printed as indicated and that no questions are missing.

SECTION A (25 MARKS)

A ray is incident on two mirrors inclined at 60° as shown in the diagram below. 1.

(2mks)

 $\mathbf{e}^{\mathbf{e}^{\mathbf{e}}}$ Determine the angle of reflection on mirror **B**, hence trace the path of the ray as it leaves mirror **B**. MOLE State and explain the observation made when an acetate rod rubbed with fur is brought close to the cap of a negatively charged electroscope. (2mks) 3. State how polarization is reduced in a dry cell. (1mk)..... Distinguish between a P-type and a N-type extrinsic semiconductors. (2mks) 5. State one similarity and one difference between the gamma rays and x-rays based on the mode of generation of the radiations. i) Similarity (1mk)ii) Difference (1mk)..... **X**-rays are produced by a tube operating at 10^4 Volts. Calculate the wavelength of the radiation. 6. (Take h=6.63x10⁻³⁴Js, e=1.6x10⁻¹⁹C, c =3x10⁸m/s) (3mks)

\$0[°]

4.

- 7. State how a vertical trace can be obtained on the screen of a cathode ray oscilloscope. (1mk)
 8. A boat sends a sound signal inethe middle of Lake Victoria and an echo is heard after 6 seconds. Determine;
 - i) The depth of the lake.

The frequency of the signal stated in (i) above. (1mk) (Take speed of sound in water = 1440ms^{-1} , wavelength = 0.4 m)

9. A concave mirror produces an erect image of magnification 2. If the focal length of the concave mirror is 30cm, find the distance of the object from the mirror. (3mks)
 (Hint: the image is virtual)

- The coils P and S are connected as shown below. P is connected to a battery, rheostat and a switch
 K. S is connected to a galvanometer G.

FOT NOTE FIFE

(2mks)

		C. COT	
	State t	he behaviour of the pointer on \mathbf{G} in the following cases;	
	i)	When K is switched on (closed) $e^{k^2 e^{2}}$	(1mk)
	•••••	A. E. E.	
	ii)	When K is opened.	(1mk)
		2 ⁸² e ^{z \$}	
12.	A cur	For of 5mA passes through a wire of length 1.0m, radius 1.0×10^{-4} mm	and resistivity
	149x10	$0^{-6}\Omega$ m. Calculate the rate at which heat is given off by the wire. (Assume temperative)	ature is
* re	consta	ant.)	(3mks)
more			
\$07			

SECTION B (55 MARKS)

13.	a) Define the term photoelectric effect.	(1mk)

b) The diagram below shows a circuit to investigate the photoelectric effect using a photocell.

i) Explain why the milliameter shows a reading when ultraviolet light is shone as in the diagram.

(3mks)

COM.	
ii) State with a reason how the milliameter reading is affected when the inter	nsity of light is increased.
2ePast P	(2mks)
eet	
iii) State one practical application of a photocell.	(1mk)
Viett.	
c) A laser beam of intensity $2x10^{-1}$ Nm ⁻² and wavelength $\lambda = 5x10^{-7}$ m hits a wa	all 5m away. How many
photons per second are emitted?	(3mks)
$(Take h=6.6x10^{-34} Js, c=3x10^8 ms^{-1})$	
FOT MOTE Free KCSE	

14.	a) Differentiate between a nuclear fussion and nuclear fission.	(2mks)
		•••••

b) The equation below represents a nuclear reaction.

 $\frac{218}{84} \mathbf{P}_{0} \longrightarrow \frac{218}{85} \mathbf{A} + \frac{q}{p} \mathbf{Y}$

i) Determine the values of **p** and **q**.

(1mk)

p..... q.....

ii)Identify Y..... (1mk)

c) The figure below represents deflection of various radiations from a radioactive source S placed in electric field between two plates X and Y.

es · con	
Identify the radiations marked with letters Meand P.	(1mk)
M	
P	
d) What do you understand by the term 'Random decay'	(1mk)
a the second sec	
e) A sample of radioactive substance initially has 8×10^{25} particles. The half life of the same	nple is 98
seconds. Determine the number of particles that will have decayed after 294 seconds.	(3mks)

	······	
	e) A sample of radioactive substance initially has 8×10^{25} particles. The half life of the	sample is 98
	seconds. Determine the number of particles that will have decayed after 294 seconds.	(3mks)
15.	a) State Snell's law.	(1mk)
\$°	b) Find the angle of incidence of a ray of light on one phase of a 60^0 prism if the ray	is just totally
	internally reflected on meeting the next face.	(3mks)
	(Take refractive index of glass = 1.5)	

d) i) State two ways in which a photographic camera is different from the human eye. (2m	ıks)
	••••
	••••
ii) Determine graphically in the space below the position, size and nature of the image of an object	
2cm high placed 30cm away from a diverging lens of focal length 20cm. (5m	ıks)

CON	
16. a) Differentiate between a transverse wave and a longitudinal wave.	(2mks)
b) water ripples are caused toetravel across the surface of a shallow tank by	means of a suitable
The distance between successive crests is 3.0cm and the waves travel 25.2cm in	1.2s.
Pagers Vist Base Pagers Jack Jack Jack Jack Jack Jack Jack Jack	
i) The velocity of the waves.	(2mks)
¢ ^{ot}	

ii) The frequency of the vibrator.

(3mks)

 17. a) State any two disadvantages of direct transmission of electricity from power generating stations at a large current through the transmission cables.
 (2mks)

.....

b) The diagram below represents part of a domestic wiring system.

Determine;

i) The effective resistance for the arrangement above.

ii) The potential difference across the 3Ω resistor.

b) The figure below shows part of the circuit containing two capacitors C₁ and C₂.

If $C_1=2 \sim F$ and the Pd across PQ is 150V while the total charge in the capacitors is 1.8×10^{-4} coulombs. Determine the capacitance of C_2 . (4mks)

(2mks)

(3mks)