\qquad

School: \qquad
\qquad
Date: \qquad

232/2
PHYSICS
PAPER 2 (Theory)
MARCH/APRIL 2015
TIME: 2 HOURS

CROSS COUNTRY EXAMS 2015

Kenya Certificate of Secondary Education (K.C.S.E.)

PHYSICS

PAPER 2
TIME: 2 HOURS

INSTRUCTIONS TO THE CANDIDATES:

- Write your name and index number in the spaces provided above
- This paper consists of two sections \boldsymbol{A} and \boldsymbol{B}.
- Answer all questions in section \boldsymbol{A} and \boldsymbol{B} in the spaces provided.
- All working must be clearly shown in the spaces provided.
- KNEC mathematical tables and silent non-programmable electronic calculators may be used.

For Examiners' Use Only

SECTION			
	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
	$1-12$	25	
	13	10	
	14	09	
	15	12	
	16	07	
	17	08	
	18	$\mathbf{8 0}$	

SEGTION A (25 MARKS)

1. A ray is incident on two mirrors driclined at 60° as shown in the diagram below.

Determine the angle of reflection on mirror \mathbf{B}, hence trace the path of the ray as it leaves mirror \mathbf{B}. State and explain the observation made when an acetate rod rubbed with fur is brought close to the cap of a negatively charged electroscope.
\qquad
\qquad
3. State how polarization is reduced in a dry cell.
\qquad
\qquad
4. Distinguish between a P-type and a N-type extrinsic semiconductors.
\qquad
\qquad
\qquad
\qquad
5. State one similarity and one difference between the gamma rays and x-rays based on the mode of generation of the radiations.
i) Similarity
\qquad
\qquad
ii) Difference
\qquad
\qquad
6. X-rays are produced by a tube operating at 10^{4} Volts. Calculate the wavelength of the radiation. (Take $h=6.63 \times 10^{-34} \mathrm{Js}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
7. State how a vertical trace can be obtained on the screen of a cathode ray oscilloscope.
8. A boat sends a sound signal inethe middle of Lake Victoria and an echo is heard after 6 seconds. Determine;
i) The depth of the lake.
$\left.8_{11}^{s_{1}^{5}}\right)$ The frequency of the signal stated in (i) above.
(Take speed of sound in water $=1440 \mathrm{~ms}^{-1}$, wavelength $\left.=0.4 \mathrm{~m}\right)$
9. A concave mirror produces an erect image of magnification 2. If the focal length of the concave mirror is 30 cm , find the distance of the object from the mirror.
(Hint: the image is virtual)
10. State Lenz's law of electromagnetic induction.
\qquad
\qquad
11. The coils \mathbf{P} and \mathbf{S} are connected as shown below. \mathbf{P} is connected to a battery, rheostat and a switch K. \mathbf{S} is connected to a galvanometer \mathbf{G}.

State the behaviour of the pointer on \mathbf{G} in thesiollowing cases;
i) When \mathbf{K} is switched on (closed)
\qquad

ii) When \mathbf{K} is operred.

12. A curfent of $5 \mathbf{m A}$ passes through a wire of length 1.0 m , radius $1.0 \times 10^{-4} \mathrm{~mm}$ and resistivity ${ }_{1} 9 \times 10^{-6} \Omega \mathrm{~m}$. Calculate the rate at which heat is given off by the wire. (Assume temperature is constant.)

SECTION B (55 MARKS)

13. a) Define the term photoelectric effect.
\qquad
\qquad
b) The diagram below shows a circuit to investigate the photoelectric effect using a photocell.

i) Explain why the milliameter shows a reading when ultraviolet light is shone as in the diagram.
\qquad
\qquad
\qquad
ii) State with a reason how the milliameter readding is affected when the intensity of light is increased.

iii) State one practical applisation of a photocell.

\qquad
c) A laser beamof of 5 intensity $2 \times 10^{-1} \mathrm{Nm}^{-2}$ and wavelength $\lambda=5 \times 10^{-7} \mathrm{~m}$ hits a wall 5 m away. How many photons per second are emitted?
14. a) Differentiate between a nuclear fussion and nuclear fission.
\qquad
\qquad
b) The equation below represents a nuclear reaction.

i) Determine the values of \mathbf{p} and \mathbf{q}.

p.

q.

ii)Identify \mathbf{Y}.
c) The figure below represents deflection of various radiations from a radioactive source S placed in electric field between two plates \mathbf{X} and \mathbf{Y}.

M.

P.
P...
d) What do you understand by thee term 'Random decay'
\qquad
\qquad
e) A sample of radióactive substance initially has 8×10^{25} particles. The half life of the sample is 98 seconds. Deteraqine the number of particles that will have decayed after 294 seconds.
a) State Snell's law.
\qquad
\qquad
b) Find the angle of incidence of a ray of light on one phase of a 60° prism if the ray is just totally internally reflected on meeting the next face.
(Take refractive index of glass $=1.5$)
c) Explain why glass prisms are preferred for use in periscopes to plane mirrors.
\qquad
\qquad
d) i) State two ways in which a photographic camera is different from the human eye.
\qquad
\qquad
ii) Determine graphically in the space below the position, size and nature of the image of an object 2 cm high placed 30 cm away from a diverging lens of focal length 20 cm .

(Use the scales vertically: 1 cm rep 1 cm , horizontally: 1 cm rep 10 cm)

16. a) Differentiate between a transverse wave $\frac{a n d}{\alpha}$ a longitudinal wave.
\qquad
\qquad
b) Water ripples are caused tociravel across the surface of a shallow tank by means of a suitable straight vibrator.
The distance between saccessive crests is 3.0 cm and the waves travel 25.2 cm in 1.2 s .
${ }^{\text {e }}$ Calculate:

i) The velocity of the waves.
ii) The frequency of the vibrator.
17. a) State any two disadvantages of direct transmission of electricity from power generating stations at a large current through the transmission cables.
\qquad
\qquad
b) The diagram below represents part of a domestic wiring system.

i) Identify any two mistakes in the wiring abgere and explain how they should be corrected. (4 mks)
\qquad
\qquad
\qquad
\qquad
ii) Identify the circuit \boldsymbol{H}^{\prime} represented above.
\qquad
\qquad
c) Complete the wiring to the socket in the wiring system \mathbf{H} above.
18. a) Theffigure below represents a circuit diagram of three resistors connected to a 12 V battery.

Determine;
i) The effective resistance for the arrangement above.
ii) The potential difference across the 3Ω resistor.
b) The figure below shows part of the circuit containing two capacitors $\mathbf{C}_{\mathbf{1}}$ and $\mathbf{C}_{\mathbf{2}}$.

If $\mathbf{C}_{\mathbf{1}}=\mathbf{2} \mu \mathbf{F}$ and the $\mathbf{P d}$ across $\mathbf{P Q}$ is $\mathbf{1 5 0 V}$ while the total charge in the capacitors is 1.8×10^{-4} coulombs. Determine the capacitance of \mathbf{C}_{2}.

