CENTRAL KENYA NATIONAL SCHOOLS JOINT EXAM - 2015

Kenya Cestificate of Secondary Education
CHEMISTRY
PAPER 3
(RRACTICAL)
TIME: $2^{1 ⁄ 1 ⁄ 4}$ HOURS

INSTRUCTIONS TO CANDIDATES:

- Answer ALL questions in the spaces provided for each question.
- You are NOT allowed to start working with the apparatus for the first 15 minutes of $2 \frac{1}{4}$ hours. This time enables you to read the questions and ensure you have all the chemicals and apparatus that you may need.
- All working must be clearly shown where necessary.
- Mathematical tables and silent electronic calculators may be used.
- This paper consists of $\mathbf{6}$ printed pages. Ensure that the question paper has all the pages and no questions are missing.

FOR EXAMINER'S USE ONLY:

QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
$\mathbf{1}$	19	
2	12	
3	09	
TOTAL SCORE	$\mathbf{4 0}$	

- Solution A, a saturated solution of sodium efthanedioate, $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (sodium oxalate).
- Solution B, aqueous potassium manganate (VII).
- Solution C, 0.1 M ammonium iron (ID) sulphate.
- 1M sulphuric (VI) acid.

You are required to:
(a) Standardize solution \mathbf{B} using solution \mathbf{C}.
(b) Determine the solâbility of \mathbf{A} at room temperature.

Procedure I

Fill the burette frith solution B.
Pipette $25 \mathrm{~cm}^{3} \mathrm{z}^{5} \mathrm{f}$ solution C into a conical flask and add $5 \mathrm{~cm}^{3}$ of 1 M sulphuric (VI) acid using a measuring cylinder.
Titrate şlution C using solution B until a permanent pale pink colour just appears.
Repeât the procedure and complete table A below.

	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of B used $\left(\mathrm{cm}^{3}\right)$			

(a) Calculate the average volume of solution B used.
(b) The reaction between manganate (VI) and iron (II) ions is shown by the ionic equation.
$\mathrm{MnO}_{4(a q)}^{-\overline{2}}+5 \mathrm{Fe}_{(a q)}^{2+}+8 \mathrm{H}_{(a q)}^{+} \quad \rightarrow \quad \mathrm{Mn}_{(a q)}^{2+}+5 \mathrm{Fe}_{(a q)}^{3+}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
(i) Calculate the number of moles of C used.
(ii) Calculate the number of moles of B used.
(iii) Calculate the number of moles of B per litre.

Procedure II

Measure the temperature of solution \mathbf{A} and record it in the space provided below.
Using a measufíing cylinder, measure $\mathbf{2} \mathbf{c m}^{\mathbf{3}}$ of solution \mathbf{A} into a conical flask and dilute it by adding $75 \mathrm{~g}_{\mathrm{n}}{ }^{3}$ of distilled water. Label this solution D.
Fill the burette with solution B. Using pipette filler pipette $25 \mathrm{~cm}^{3}$ of solution D into a conical flaskaind add $5 \mathrm{~cm}^{3}$ of $\mathbf{1 M}$ sulphuric acid using a measuring cylinder.
Hêadt the solution to about $60^{\circ} \mathrm{C}$ and titrate while still hot with B until a permanent pink colour just appears. Record your results in the table \mathbf{B} below. Repeat this procedure to complete the table.

Temperature of solution A \qquad ${ }^{\circ} \mathrm{C}$.

Table B	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of B used $\left(\mathrm{cm}^{3}\right)$			

(c) (i) Calculate the average volume of B used.

The reaction between manganate (VII) ions and ethanedioate ions is given by the ionic equation below.

$$
2 \mathrm{MnO}_{4(a q)}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4(a q)}^{2-}+16 \mathrm{H}_{(a q)}^{+} \rightarrow 2 \mathrm{Mn}_{(a q)}^{2+}+10 \mathrm{CO}_{2(g)}+8 \mathrm{H}_{2} \mathrm{O}_{(1)}
$$

(ii) Calculate the number of moles of manganate (VII) ions in average volume of B used.
(1mk)
(ived ${ }^{\sigma^{-e^{e}}}$ Calculate the number of moles of ethandioate ions in $100 \mathrm{~cm}^{3}$ of solution D. (1 mk)
(v) How many moles of ethandioate ions are in $25 \mathrm{~cm}^{3}$ of solution A used
(1mk)
(vi) Given that the molecular formula of sodium ethandioate is $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, calculate its solubility in grams per 100 g of water at room temperature ($\mathrm{Na}=23, \mathrm{C}=12, \mathrm{O}=16$). (Assume the density of solution is $1 \mathrm{~g} / \mathrm{cm}^{3}$).
(2mks)
in the spaces provided.
(a) Place about half of solid G in a clean dry test tube and heat it strongly.

(b) Place the remaining solid G in a boiling tube. Add $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}}$ of distilled water. Shake the mixture for 1 minute. Filter the mixture.

(i) Dip blue and red litmus papers into the filtrate.

| Observation | Inference | |
| :--- | ---: | ---: | :---: |
| | | |
| | $(1 \mathrm{mk})$ | $(1 \mathrm{mk})$ |

(ii) To about $2 \mathrm{~cm}^{3}$ of filtrate, add 3 drops of dilute hydrochloric acid.

Observation		Inference	
	$(1 \mathrm{mk})$	$(1 \mathrm{mk})$	

(iii) To about $2 \mathrm{~cm}^{3}$ of filtrate, add drops of 2 M sulphuric (VI) acid.

Observation		Inference	
	$(1 \mathrm{mk})$	$(1 \mathrm{mk})$	

(iv) To about $1 \mathrm{~cm}^{3}$ of filtrate, add $5 \mathrm{~cm}^{3}$ of dilute sodium hydroxide (excess).
\qquad
(1mk)

Inferences in the spaces provided.
(a) Place one drop of liquid F on a merallic spatula and burn it using a Bunsen burner.

(b) Place about $2 \mathrm{~cm}^{3}$ of the remaining liquid F in a test tube. Add $3 \mathrm{~cm}^{3}$ of distilled water and share the mixture well.

(c) (i) To about $2 \mathrm{~cm}^{3}$ of the remaining liquid F , add a small amount of sodium hydrogen carbonate.

Observation

hydrogen carbonate. Observation		
$(1 \mathrm{mk})$		$(1 \mathrm{mk})$

(ii) To about $1 \mathrm{~cm}^{3}$ of liquid F, add $1 \mathrm{~cm}^{3}$ of acidified potassium dichromate (VI).

Observation
(iii) To about $2 \mathrm{~cm}^{3}$ of the mixture, add two drops of bromine water.

| Observation | Inference | |
| :--- | :--- | :--- | :--- |
| | | |
| | $(1 \mathrm{mk})$ | $(1 \mathrm{mk})$ |

