	COR	>
NAME	e ^{to} .	INDEX NO
233/3 CHEMISTRV	oast Pat	CANDIDATE'S SIGN
PAPER 3 (PRACTICAL)	ercser	DATE
TIME: 2 ¹ / ₄ HOURS	ward fre	
	J ^{jaji} ^x	
pere	\$	

CENTRAL KENYA NATIONAL SCHOOLS JOINT EXAM - 2015

Kenya Certificate of Secondary Education CHEMISTRY PAPER 3 (RRACTICAL) TIME: 2¹/₄ HOURS

INSTRUCTIONS TO CANDIDATES:

- Answer **ALL** questions in the spaces provided for each question.
- You are **NOT** allowed to start working with the apparatus for the first 15 minutes of 2¹/₄ hours. This time enables you to read the questions and ensure you have all the chemicals and apparatus that you may need.
- All working must be clearly shown where necessary.
- Mathematical tables and silent electronic calculators may be used.
- This paper consists of **6** printed pages. Ensure that the question paper has all the pages and no questions are missing.

FOR EXAMINER'S USE ONLY:

QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
1	19	
2	12	
3	09	
TOTAL SCORE	40	

- con - Solution A, a saturated solution of sodium ethanedioate, $Na_2C_2O_4$ (sodium oxalate).
- Solution B, aqueous potassium manganate (VII).
- Solution C, 0.1M ammonium iron (IL) sulphate.
- 1M sulphuric (VI) acid.

You are required to:

- eexc Standardize solution **B** using solution **C**. (a)
- Determine the solarbility of A at room temperature. (b)

Procedure I

Fill the burette with solution B.

Pipette 25cm³ of solution C into a conical flask and add 5cm³ of 1M sulphuric (VI) acid using a measuring cylinder.

Titrate **solution** C using **solution** B until a **permanent pale pink** colour **just** appears. **Repeat** the procedure and complete **table** A below.

FOT NOTE FIEE

I able A	1	11	111	
Final burette reading (cm ³)				
Initial burette reading (cm ³)				
Volume of B used (cm ³)				(4mks)

тт

ттт

Calculate the average volume of solution B used. (a)

(b) The reaction between manganate (VI) and iron (II) ions is shown by the ionic equation.

 $MnO_{4(aq)}^{-} + 5Fe_{(aq)}^{2+} + 8H_{(aq)}^{+} \rightarrow Mn_{(aq)}^{2+} + 5Fe_{(aq)}^{3+} + 3H_2O_{(1)}$

Calculate the number of moles of C used. (i) (1mk)

(ii) Calculate the number of moles of B used. (1mk)

(1mk)

Procedure II

FOT NOTE Free

itait www.freekcaepastpapers.com Measure the temperature of solution A and record it in the space provided below. Using a measuring cylinder, measure 2cm³ of solution A into a conical flask and dilute it by adding 75cm³ of distilled water. Label this solution D.

Fill the burette with solution B. Using pipette filler pipette 25cm³ of solution D into a conical flaskand add 5cm³ of **1M sulphuric acid** using a measuring cylinder.

Heat the solution to about 60°C and titrate while still hot with B until a permanent pink colour Just appears. Record your results in the table B below. Repeat this procedure to complete the table.

Temperature of solution A _____ °C.

Table B	Ι	II	III	
Final burette reading (cm ³)				
Initial burette reading (cm ³)				
Volume of B used (cm ³)				(41

Calculate the average volume of B used. (c) (i)

> The reaction between manganate (VII) ions and ethanedioate ions is given by the ionic equation below.

(1mk)

$$2MnO_{4(aq)}^{-} + 5C_2O_{4(aq)}^{2-} + 16H_{(aq)}^{+} \rightarrow 2Mn_{(aq)}^{2+} + 10CO_{2(g)} + 8H_2O_{(1)}$$

(ii) Calculate the number of moles of manganate (VII) ions in average volume of B used. (1mk)

3

Calculate the number of moles of ethandioate ions in 25cm³ of solution D. (1mk)

(ives the contract of moles of ethandicate ions in 100cm³ of solution D. (1mk) (ives the contract of moles of ethandicate ions in 100cm³ of solution D. (1mk) (interpret the contract of t

(v) How many moles of ethandioate ions are in 25cm³ of solution A used? (1mk)

(vi) Given that the molecular formula of sodium ethandioate is $Na_2C_2O_4$, calculate its solubility in grams per 100g of water at room temperature (Na = 23, C = 12, O = 16). (Assume the density of solution is $1g/cm^3$). (2mks)

3. You are provided with liquid F. Carry out the tests below and write your observations and

