\qquad

CENTRAL KENYA NATIONAL SCHOOLS JOINT EXAM - 2015

Kenya Certificate of Secondary Education
 MATHEMAJICS ALT A
 PAPER 1.
 TIME: $2^{2} / 2$ HOURS

INSTRUCTION TO CANDIDATE'S:

(a) Write your name, index number and school in the spaces provided at the top of this page.
(b) Sign and write the date of examination in spaces provided above.
(c) This paper consists of TWO sections: Section I and Section II.
(d) Answer ALL the questions in Section I and any five questions from Section II.
(e) Show all the steps in your calculation, giving your answer at each stage in the spaces provided below each question.
(f) Marks may be given for correct working even if the answer is wrong.
(g) Non-programmable silent electronic calculators and KNEC Mathematical tables may be used, except where stated otherwise.
(h) This paper consists of 16 printed pages.
(i) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
(j) Candidates should answer the questions in English.

FOR EXAMINER'S USE ONLY:

SECTION I

1	2	3	4	5	6	7	$\mathbf{8}$	9	10	11	12	13	14	15	16	TOTAL

SECTION II

17	18	19	20	21	22	23	24	TOTAL

Answer all the questions in this sectignin the spaces provided.

1. Without using a calculator, evaluafe:
$\frac{1 \frac{4}{5} \text { of } \frac{25}{18} \div 1 \frac{2}{3} \times 24}{2 \frac{1}{3}-\frac{1}{4} \text { of } 12 \div \frac{5}{3} \zeta^{3}}$
Leaving your affswer as a mixed number.
2. Simplify:
$\frac{2 a^{2}-3 a b-2 b^{2}}{4 a^{2}-b^{2}}$
3. Without using Mathematical tables or a calculator evaluate:
$6 \log _{2} \sqrt[3]{64}+10 \log _{3} \sqrt[5]{243}$
4. In the figure below TP and TQ are tangents to the circle and PR is parallel to TQ. Find the angle marked b and c .

5. A train 20 m long is moving at an average speed of $52 \mathrm{~km} / \mathrm{h}$. Another train 30 m long is moving in the opposite direction at an average speed of $48 \mathrm{~km} / \mathrm{h}$. How long do the trains take to completely pass each other. Leave your answer in seconds.
6. ABCDE is a regular pentagon. Its sides AB and DC are produced to meet at T . Calculate $\angle \mathrm{BTC}$.
(2mks)

7. Two cylindrical buckets are similar in shape base radius 7 cm and 10.5 cm . The smaller bucket holds 4 litres. Calculate the volume of the Rarger bucket.
8.

A fridge costs Sh.1400. It may be bought at hire purchase by paying a deposit of Sh. 3500 and the remainder, which has an interest charge of 18% added, in 12 equal monthly installments. Calculate:
The monthly installments to the nearest shilling.
(4mks)
9. The second term of four consecutive odd numbers is $2 n+1$. If the sum of the three numbers is 10104. Find the value of n.
10. A translation maps a point $P(3,2)$ onto $P^{1}(5,5)$
(a) Determine the translation vector.
(b) $Q^{\partial^{5}}$ A point Q^{1} is the image of the point $Q(2,5)$ under the same translation. Find the length of $\mathrm{P}^{1} \mathrm{Q}^{1}$, leaving the answer in surd form.
11. A contractor employs 40 men to do a piece of work in 60 days each man working 9 hours a day. He is then requested to do the job in 48 days. How many more men working 10 hours a day does he need to employ.
12. Solve for y if: $9^{(\mathrm{y} 2)}=27^{(2 y+2)}$.
13. Sồve for χ :
$\operatorname{Sin}(2 \chi+20)=\operatorname{Cos} \frac{\chi}{3}$.
14. (i) Express 48 and 60 as a product of their prime factors.
(ii) A room of side 48 m and 60 m is to be decorated using square tiles side XM. Find the greatest area of the tile.
15. A man spent $\frac{1}{9}$ of his salary on food and $\frac{1}{\widetilde{r}^{4}} \frac{5}{5}^{5^{\circ}}$ one remainder on electricity and water bills. He paid fees with 20% of his salary and invested 16% of what was left on business. After taking a game drive on which he spent Kshi2000, he saved Ksh.5350. Calculate his monthly earnings.
16. Form three inequalities that satisfy the region R.

SECTION II: (50 MARKS)

Answer only five questions from this seetion in the spaces provided:
17. Three hundred and sixty litres of a homogeneous paint is made by mixing three paints A, B and C . The ratio by volume of paint Ato paint B is $3: 2$ and paint B to paint C is $1: 2$. Paint A costs Sh. 180 per litre, paint B Sh. 240 per litre and paint C Sh. 127.50 per litre.
Determine:
(a) The volume ofeach type of paint in the mixture.
(b) The amount of money spent in making one litre of the mixture.
(c) the percentage profit made by selling the mixture at Sh. 221 per litre.
18. The length and breadth of a rectangle are giyenin as $(6 \chi-1)$ and $(\chi-2) \mathrm{cm}$ respectively. If the length and breadth are each increased by 4 cm , thenew area is three times that of the original rectangle.
(a) Form an equation in χ and solve it.
(b) Find the dimensions of the original rectangle.
(c) Express the increase in area as a percentage of the original area.
19. Three points $\mathrm{A}(0,4), \mathrm{b}(2,3)$ and $\mathrm{C}(-2,-1)$ fre vertices of a triangle.

Find:
(a) (i) the gradient of AC.

(iii) the coordinates of the mid-point of line AC .
(b) (i) the gradient of AB .
(ii) the gradient of the perpendicular bisector of line AB .
(iii) The coordinates of the mid-point of AB.
(c) (i) Find the equation of perpendiacular bisector of AC.
((ii) Perpendicular bisector of AB .
(iii) Hence find the coordinates of the circumcentre of the triangle.
20. A bird flies from a tree P to another tree Q wherich is 50 metres on a bearing of 030° from P. Form Q the bird flies 80 metres due West 88 another tree R and finally flies due South to another tree S which is on a bearing of 240° fronn $^{\circ} \mathrm{P}$.
(a) Construct an accurate scale deâwing showing the positions of $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S .
(i) From your diaga measure the distance and bearing of R from P.

Use a scale of $(1 \mathrm{~cm}=10 \mathrm{~m})^{2}$.

(ii) The distance of S from R in metres.
(iii) The distance of S from P in metres.
21. The table below shows marks out of 40 obtained by 100 students in form 2.

Marks	1-5	6-10 $0^{\text {x }}$ ¢ ${ }^{\text {e }}$ 11-20		21-25	26-40
No. of students	7	$3 x-6$	38	$5 \chi+3$	χ

(a) Determine the value of \mathcal{Z}.
(b) Using a scale 1 cm to represent 5 marks on the horizontal axis and an area of $1 \mathrm{~cm}^{2}$ to represent 5 students, draw a histogram to represent this data.
(c) Use histogram to estimate the median.
(3mks)
22. (a) Use the trapezium rule to estimate thes area between the curve $\mathrm{y}=3 \chi^{2}+1$, lines $\chi=1$ and $\chi=3$ and X -axis. Use five ordinates. (3mks)
(b) Use integration method to firifl the exact area under a curve $\mathrm{y}=3 \chi^{2}+1$.

23. (a) The figure below is a model representing a rocket capsule. The model whose total height is 15 cm is made up of a conical tope, a hemispherical bottom and the middle part is cylindrical. The radius of the base of the coye and that of the hemisphere are each 3 cm . The height of the cylindrical part is 8 cm

Calculate the external surface area of the model.
(4mks)
(c) The actual rocket has a total height of 6 metres. The outside of the actual rocket capsule is to be painted. Calculate the amount of paint required if an area of $20 \mathrm{~m}^{2}$ requires 0.75 litres of the paint.
24. In the triangle $\mathrm{OAB}, \mathrm{OA}=\underset{\sim}{\mathrm{a}}, \mathrm{OB}=\underset{\sim}{\mathrm{b}} \underset{\mathrm{Q}^{\circ}}{\mathrm{and}} \mathrm{O}^{c^{\circ} \mathrm{C}}=\frac{3}{2} \mathrm{OA}$.

M divides OB in the ratio 3: 2.

(a) Express in terms of $\underset{\sim}{a}$ and $\underset{\sim}{b}$ only, the vectors.
(i) AB .
(ii) MC.
(b) Given the $\mathrm{MN}=\mathrm{hMC}$ and $\mathrm{BN}=\mathrm{KBA}$, express vector MN in two different ways hence find the value of h and K.
(c) Show that the points M, N and C are collinear.

