232/3
PHYSICS
PAPER 3
(PRACTICAL)
TIME: $\mathbf{2}^{1 ⁄ 2} \mathbf{2}$ HOURS

CANDIDATE'S SIGN

DATE \qquad

CENTRAL KENYA NATIONAL SCHOOLS JOINT EXAM - 2015

Kenya Certificate of Secondary Education
PHYSICS ${ }^{S}$
PAPER 3
(PRACTICAL)
TdME: $\mathbf{2}^{1 ⁄ 2}$ HOURS

INSTRUCTIONS TO CANDIDATES:

1. Write your name and index number in spaces provided above.
2. Sign and write the date of examination in spaces provided above.
3. Answer all the questions in spaces provided in the question paper.
4. You are supposed to spend the first 15 minutes of $2 \frac{1}{2}$ hours allowed for this paper reading the whole paper carefully before commencing the work.
5. Marks are given for clear record of the observations actually made, their suitability, accuracy and the use made of them.
6. Candidates are advised to record their observations as soon as they are made.
7. Non-programmable silent electronic calculators and KNEC Mathematical table may be used.

FOR EXAMINER'S USE ONLY

Question 1	a	c \& d	e	Part B	j	k	i \& m	Total	20
Maximum Score	2	2	1		5	5	3		
Candidate's Score									

Question 2	a	b(i) $-($ vi)	Part B	(i)	(ii)	Total	$\mathbf{2 0}$
Maximum Score	3	15		1	3		
Candidate's Score							

GRAND
TOTAL \square

1. You are provided with the following apparatus:

- Two optical pins mounted on corks.
- Candle.
- Metre rule.
- Screen.
- White sheet of paper.
- Lens and lens holder.
- Plane mirror.
- Clamp stand.
- Boss and a clamp.
- Piece of celløtape.
- Vernier galipers.
(a) set up your apparatus as in figure 2 such that the tip of the cork is vertically above the center of lens.
the lens

Figure 2
(b) Raise the cork until it coincides with is image without any parallax.
(c) Measure the height h .
$\mathrm{h}=$ \qquad cm
(d) Measure the thickness of the lens t . \qquad cm
(e) Calculate the focal length from $f=\frac{2 h-t}{2} \quad f=$ \qquad $\mathrm{cm} \quad(1 \mathrm{mk})$

(a) Place pin P_{1} and Pin $\mathrm{P}_{2} 3 \mathrm{~cm}$ apart and at right angle to the principal axis of the convex lens.
(b) Place the candle behind P_{1} to illuminate it.
(c) Fix the white sheet of paper on the screen using a cello tape.
(d) Place the screen in front of the lens and move it until a shape image of pin appear on the screen.
(e) Draw a line against image of P_{1}.
(f) Without moving the screen, move the candle behind P_{2} so that a shape image of P_{2} appears on the screen.
(g) Draw a line against the image of P_{2} and measure the distance d1, between the two images.
(h) Calculate the magnification from $\mathrm{M}=\frac{d_{1}}{d_{0}}$.
(i) Complete the table using other values of the objects distances (U) in the table.

	Object distance $\mathrm{U}(\mathrm{cm})$	$\mathrm{d}_{1}(\mathrm{~cm})$	Magnification (M)	$\frac{1}{M}$
1.	23.5			
2.	26.5			
3.	30.0			
4.	35.0			
5.	40.0			
6.	45.0			
7.	50.0			

(j) Plot a graph of $\mathrm{U}(\mathrm{cm})$ against $\frac{1}{M}$.

(k) Determine the gradient of the graph.
(l) Given that $\frac{U}{f}=\frac{1}{M}+1$ determine $\mathrm{threx}^{4^{5}} \mathrm{c}^{\circ}$ focal length of the lens.
(1mk)
2. You are provided with the following apparatus.

- 2 new dry cells size D
- A cell holder.
- One 100 cm resistance wire mounted on millimeter scale.
- 1 switch.
- 1 Voltmetre $0-3 \mathrm{~V}$.
- 1 Ammeter $0-1 \mathrm{~A}$.
- 8 connecting wires (4 with at least 1 crocodile clip).
- Resistor wire mounted on cardboard.
(a) Connect the circuit as shown below in figure 3.0.

Figure 3.0

Record the reading of
(i) Ammeter,
$\mathrm{I}=$ \qquad A
(1mk)
(ii) Voltmeter,
$\mathrm{V}=$ \qquad V
(1mk)
(iii) Given that $K=\frac{V}{I}$, find $\mathrm{K}=$ (1mk)
(b) Disconnect figure 3.0 above and arrange the apparatus as shown below.

(i) Adjust the position of crocodile clip on the resistance wire to a point such that $\mathrm{L}=10 \mathrm{~cm}$.
(ii) Record in the table 2, the value of p.d across R and corresponding current through R.
(iii) Repeat procedure in (2) above for $\mathrm{L}=20,30,40,50,60,70 \mathrm{~cm}$.

L(cm)	10	20	30	40	50
V(V)					
I(A)					

(iv) On the grid provided plot the graph of V (Y-axis) against I (X-axis). (5mks)
${\stackrel{\Delta}{\mathrm{O}_{2}}}^{2}$

(v) Find the slope of the graph.
(vi) What quantity is represented 6 多 the slope of the graph?

PART B

You are provided with the following:

- A 70cm lodeg thread.
- Stopwatền.
- Metrếr rule.
- Clâmp, boss and retort stand.
- CSmall pieces of wood.

Proceed as follows:

(i) Using the provided thread, tie the marble to be used as a pendulum clamp the thread so that the length of the pendulum to the centre of the marble is 50 cm as in figure 3 .

Displace the marble slightly so as to oscillate along the vertical plane.
Time and record the time, t , for 20 oscillations.
$t=$ \qquad S
(ii) If the oscillation of the marble is given by the formula $T^{2}=\frac{4 \pi^{2} \ell}{g}$. Use the values in part (i) above to determine the value of g.

