MATHEMATICS

121 / 2
SECTION I (50 Marks)
Answer all questions fromsthis section

1. Given that $\log _{2} 2.20$. 7419 , find the logarithm to base a of.
(a) 32
$Q^{2,}$
(b) 0.1255^{x}
$1 \mathrm{mk} * N D I^{*}$
$e^{2} \cdot 0^{5}$

where a and b are rational numbers, find the values of a and b .
3.3 .? Find the product of 25.2 and 18.5 measured to the nearest one tenth. Hence or otherwise find the relative error in the product.

3mks*NDI*
$1 \mathrm{mk} * \mathrm{NDI}^{*}$
3mks*NDI*
3mks*NDI*

Solve for x if

$$
6 x^{2}-9 x-4=0
$$

5. In the figure below, the two circles touch at Q, PQ is a diameter, PR is a tangent and angle $R P Q=26^{0}$ find x.

3mks*NDI*

$$
\mathrm{R}
$$

6. Given that $\mathrm{x}=3 \mathrm{i}+2 \mathrm{j}-4 \mathrm{k}, \mathrm{y}=-3 \mathrm{i}+5 \mathrm{j}-2 \mathrm{k}$ and $\mathrm{z}=4 \mathrm{i}+3 \mathrm{j}+5 \mathrm{k}$ and that $\mathrm{P}=4 \mathrm{x}-2 \mathrm{y}+3 \mathrm{z}$, find the magnitude of P to 4 significant figures.
~
7. Three friends Loice, Rachel and Jane went out for shopping. Loice bought 2 safaricom cards, 2 kg of rice and $1 / 2 \mathrm{~kg}$ of meat. Rachel bought 1 safaricom card, 3 kg of rice and $11 / 2 \mathrm{~kg}$ of meat; Jane bought 5 cards of safaricom, 4 kg of rice and 2 kg of meat.
a) Write this information in the form of a matrix.
$1 \mathrm{mk} * N D I^{*}$
b) The cost of a safaricom card is sh.100, a kg of rice at ksh 60 and a kg of meat ksh.150. Use matrix multiplication to find the amount of money spent by each of the three girls. $2 \mathrm{mks} * N D I^{*}$
8. Make x the subject of the formula.
$3 \mathrm{mks} * N D I^{*}$

9. The sum of the first four terms of an arithmetic progression is 14 . If the sum of the first eight terms is 108 , find the sixth term of this progression.

3 mks *NDI*
10. Expand $(3+a)^{5}$ $1 \mathrm{mk} * N D I^{*}$
Hence evaluate $(2.97)^{5}$ correct to 4 significant figures.
$2 \mathrm{mks} * N D I^{*}$
11. The base length of a square pased pyramid is 24 cm . The slant edges are 20 cm long. Calculate the angle between a sloping face and the base.
$3 \mathrm{mks} * N D I^{*}$
12. Two bags M and N areon a desk. Bag M contains 12 red pens and 16 black pens; bag N contains 8 red pens and 12 black pens. A bag is chosen at random and two pens drawn from it, one at a time without replacement. Find the probability that the first pen picked is black and the second is reê.
$3 \mathrm{mks} * N D I^{*}$
13. Grade A teg eosts Ksh 100 per kg while grade B costs ksh 150 per kg. Find the ratio in which the two grades should be mixed to get a mixture worth ksh. 140 per kg.
$3 \mathrm{mks}{ }^{*} N D I^{*}$
14. Use 5drapezia and the trapezium rule to estimate the area bounded by $\mathrm{y}=\mathrm{x}(\mathrm{x}-5)$ and the x axis ${ }^{2}{ }^{3} y^{\prime \prime}$
$3 \mathrm{mks} * N D I^{*}$
15. 合ivern below are three points A, B and C . Locate point D such that $\mathrm{AD}=\mathrm{BD}=\mathrm{CD}$ and measure $A D$. Construct the locus of a point P whose distance from D is always $=A D$ $3 \mathrm{mks} * N D I^{*}$
.B
16. The distance S in metres covered by a moving particle after time t in seconds is given by*NDI*

$$
S=t^{3}+4 t^{2}-3 t+2
$$

Find
(a) the distance covered at $\mathrm{t}=4$ seconds.
$1 \mathrm{mk} * N D I^{*}$
(b) the instant at which the particles is at rest.
$3 \mathrm{mks} * N D I^{*}$

SECTION II (50 Marks)

Answer any five questions from this section

17. Quadrilateral WXYZ with vertices $W(5,0), x(2,-3) Y(8,-3)$ and $Z(8,-1)$ is mapped onto quadrilateral W, X, Y, Z by reflection on the line $y=x . W_{2} X_{2} Y_{2} Z_{2}$ is the image of W, X, Y, Z under a reflection on the line $y=0$
a) Plot the three quadrilaterals on the grid below. $4 \mathrm{mks} * N D I^{*}$
b) Describe fully the single transformation which maps WXYZ onto $\mathrm{W}_{2} \mathrm{X}_{2} \mathrm{Y}_{2} \mathrm{Z}_{2} \quad 2 \mathrm{mks} * N D I^{*}$
c) Determine a single matrix which maps $\mathrm{W}_{2} \mathrm{X}_{2} \mathrm{Y}_{2} \mathrm{Z}_{2}$ onto WXYZ. 4 mks *NDI*
18. The figure below shows a triangle $\mathrm{ABC} . \mathrm{AC}=4 \mathrm{~cm} \mathrm{BC}=3.7 \mathrm{~cm}$ and angle $\mathrm{BAC}=63^{\circ} .{ }^{*} N D I^{*}$

© The Nandi North District Examination Committee 2006
Mathematics 121 /2
TURN OVER
Tips on passing KCSE subscribe freely @ http://www.joshuaarimi.com
Support thru' M-pesa 0720502479 . Connect with Joshua Arimi on facebook. Not 4 resale.
a）Find the radius of the circke that passes through A, B and C ．
b）Calculate the length of $\mathbb{A B}$ ．
c）Determine the shaded area
19．Rates of tax in operation in January 2006 are as given in the table below．

Mghthly taxable income（sh）							Rate of tax（\％）
$e^{2,}$	$1-8680$	10					
e^{2}	$8681-16240$	15					
0	$16241-23820$	20					
$23821-31400$	25						
0	Over 31，400	30					

orremboi pays ksh． 5400 as P．A．Y．E monthly after getting a monthly relief of ksh1093．
Q⿹\zh26灬才culate his monthly salary． $10 \mathrm{mks} * N D I^{*}$
20.3 The masses of 50 students in a form 4 class were taken and recorded as in the table below．

Mass（kg）	$40-42$	$43-45$	$46-48$	$49-51$	$52-58$	$59-69$
Frequency	3	11	20	9	5	2

a）Calculate the median mass．
4mks＊NDI＊
b）Calculate the semi－interquartile range
4mks＊NDI＊
c）If the students are arranged in order from the lightest to the heaviest，find the mass of the $45^{\text {th }}$ student．$\quad 2 \mathrm{mks} * N D I^{*}$
21．Complete the table below for the functions $\mathrm{y}=2 \sin 3 \mathrm{x}$ and $\mathrm{y}=\tan \mathrm{x}$ for $\mathrm{O}^{0} \leq \mathrm{x} \leq 360^{\circ}$ ．

x	0	30	60	90	120	150	180	210	240	270	300	330	360
3 x	0	90	180	270	360	450	540	630	720	810	900	990	1080
$2 \sin 3 \mathrm{x}$													
$\tan \mathrm{x}$													

a）On the same axes，draw the graphs of $y=2 \sin 3 x$ and $y=\tan x$ ．
$5 \mathrm{mks}{ }^{*} N D I^{*}$
b）Use your graphs to solve the equation．
$3 \mathrm{mks}{ }^{*} N D I^{*}$
$\tan \mathrm{x}-2 \sin 3 \mathrm{x}=0$
22．The positions of two towns on the surface of the earth are given as $\mathrm{A}\left(30^{\circ} \mathrm{S}, 20^{\circ} \mathrm{W}\right)$ and $\mathrm{B}\left(30^{\circ} \mathrm{S}\right.$ ， $80^{\circ} \mathrm{E}$ ）
Find
a）the difference in longitude
$2 \mathrm{mks}{ }^{*} N D I^{*}$
b）the distance between the two towns along a parallel of latitude in
（i） km （take the radius of the earth as 6370 km and $\pi=22 / 7$ ）
3mks＊NDI＊
（ii） nm
2mks＊NDI＊
c）Find the local time in town B when it is $1: 45 \mathrm{pm}$ in town A ．
$3 \mathrm{mks} * N D I^{*}$

23．The equation of a curve is given as

$$
y=x^{3}+x^{2}-6 x
$$

a）Show that $\mathrm{y}=\underline{-1+\sqrt{ } 19}$ is a minimum turning point． $4 \mathrm{mks} *$ NDI *
b）determine the coordinates of the other stationary point．
$3 \mathrm{mks}{ }^{*}{ }^{N D I *}$
c）find the area bounded by the curve and the x－axis．
3mks＊NDI＊
24．Eldoret Airport is planning to build a fire fighting plant on a space of $250 \mathrm{~m}^{2}$ ．Two types of machines are to be installed，machine x which occupies a space of $5 \mathrm{~m}^{2}$ and machine Y which occupies $10 \mathrm{~m}^{2}$ ．The airport can have a maximum of 40 machines at a time．At most 15 machines of type Y are used at any given time．
a）write down three inequalities other than $\mathrm{x}>0$ ，and $\mathrm{y}>0$ ．
$3 \mathrm{mks} * N D I^{*}$
b）On the grid below，show the region satisfying the given conditions．

0	10	20	30	40	50	60

c) The profit from a type x machine is Ksh 1000 and that of type y is 4000 .
(i) Write down the objective function.
$1 \mathrm{mk} * N D I^{*}$
(ii) Use the graph to obtain the number of machines of each type that should be installed to obtain maximum profit.

2 mks *NDI*
(iii) Calculate the maximum profit.
$1 \mathrm{mk} * N D I^{*}$

