MATHEMATICS

Paper 2

JULY/AUG. 2006
Time: $\mathbf{2}^{1 / 2}$ Hours

SECTION I (50 marks)

1. Find the perdentage error in the value of $x+y$ if $x=2.8 \mathrm{~cm}$ and $y=3.6 \mathrm{~cm}$ measured to the nearest

(Answer all questions in this section)

承 Evaluate p^{2}, hence use the matrix method to solve the simultaneous equations.(3mks) *Nrk*

$$
\begin{aligned}
& -5 x=8 y+2 \\
& 3 x=-5 y+1
\end{aligned}
$$

3. $\quad \mathrm{P}$ varies partly as the square of V and partly as the cube of V . When $\mathrm{V}=2, \mathrm{P}=-20$ and when $v=-3, P=135$. Find the relationship between P and V.
(3mks) *Nrk*
4. Make x the subject of the formula.
(3mks) *Nrk*

$$
P=\sqrt{\frac{x+2 w}{4 x+3 R}}
$$

5. Without using logarithm tables, solve the equation $\log (5 x-4)=\log (x+2)+\frac{1}{3} \log 27$.
(3mks) *Nrk*
6. A bag contains 2 green balls, 3 red and one blue ball. Another bag contains 4 green, 5 red and 3 blue balls. A ball is chosen at random from the bag. Find the probability that the chosen ball is blue
(3mks) *Nrk*
7. The second term of a G.P is 6 , and the fifth term is 48 , find the common ratio and the $3^{\text {rd }}$ term of the G.P.
(3mks) *Nrk*
8. The velocity v of a body moving in a straight line at any time t is given by $v=3 t-2$. Its distance at time $\mathrm{t}=0$ is equal to 4 . Calculate the distance when $\mathrm{t}=4$. (3 mks) $* N r k *$
9. A lorry starts from rest and after t seconds, its speed, vm / s is given by the following table

t	0	1	2	3	4	5	6
Vm / s	0	2.4	4.2	5.6	6.6	7.2	7.6

Use the trapezoidal rule to estimate the distance the lorry travels in the six seconds.
(3mks) *Nrk*
10. Solve the equation $8 \cos ^{2} \theta+2 \operatorname{Cos} \theta-3=0$, for $0^{\circ} \leq \theta \leq 360^{\circ}$
(3mks) *Nrk*
11. The diagram below represents a_{A} field $A B C$.

a) Draw the locus of points equidistant from sides AB and AC
b) Draw the locus of points equidistant from points A and C . (1mk) *Nrk*
c) A coin is lost within a region which is nearer to point A than to point C and closer to side $A C$ than to side $A B$. Shade the region where the coin can be located.
12. The average rate of depreciation in value of a new generator is 8% per year. After use for four years its value was found to be sh.107,457. Find its value at the beginning of the four year period.
(4mks) *Nrk*
13. Expand and simplify $(1-3 x)^{5}$, Hence use your expansion up to the term x^{3} to estimate $(0.94)^{5}$ correct to 4 significant figures.
(4mks) *Nrk*
14. Simplify the following by rationalizing the denominator.
(3mks) *Nrk*

15. The equation of a circle is given by $x^{2}+y^{2}+4 x-5=0$. Find the radius and the centre of the circle. $e^{2^{s}} 0^{6}$
(3mks) *Nrk*
16. Two towns.áre such that $\mathrm{A}\left(68^{\circ} \mathrm{N}, 73^{0} \mathrm{~W}\right)$ and $\mathrm{B}\left(68^{\circ} \mathrm{N}, 107^{\circ} \mathrm{W}\right)$. Find the shortest distance between thè iffradius of the earth is 6370 km . (3mks) *Nrk*

SECTIQN W

17. 2 Trevingle PQR whose vertices are $p(2,2), Q(5,3)$ and $R(4,1)$ is mapped onto triangle $P^{\prime} Q^{\prime} R^{\prime}$ by会会"
a) On the grid draw $P Q R$ and $P^{1} Q^{1} R^{1}$.
(4mks) *Nrk*
b) The triangle $P^{1} Q^{1} R^{1}$ is mapped onto triangle $P^{11} Q^{11} R^{11}$ whose vertices are $P^{11}(-2,-2), Q^{11}(-5,-3)$ and $\mathrm{R}^{11}(-4,-1)$
(i) Find the matrix of transformation which maps triangle $\mathrm{P}^{1} \mathrm{Q}^{1} \mathrm{R}^{1}$ onto $\mathrm{P}^{11} \mathrm{Q}^{11} \mathrm{R}^{11}$.
(2mks) *Nrk*
(ii) Draw the image $\mathrm{P}^{11} \mathrm{Q}^{11} \mathrm{R}^{11}$ on the same grid and describe the transformation that maps
$P Q R$ onto $P^{11} \mathrm{Q}^{11} \mathrm{R}^{11}$.
c) Find a single matrix of transformation which will map PQR on to $\mathrm{P}^{11} \mathrm{Q}^{11} \mathrm{R}^{11} .(2 \mathrm{mks}) * N r k *$
18. The figure below shows a square $A B C D$ point V is vertically above middle of the base $A B C D$.

$\mathrm{AB}=10 \mathrm{~cm}$ and $\mathrm{VC}=13 \mathrm{~cm}$.
Find;
(a) the length of diagonal AC
(2mks) *Nrk*
(b) the height of the pyramid
(c) the acute angle between VB and base ABCD. (2mks) *Nrk*
d) the acute angle between BVA and ABCD. (2mks) *Nrk*
e) the angle between AVB and DVC.
19. The following table shows the distribution of marks obtained by 50 students.

Marks	$45-49$	$50-54$	$55-59$	$60-64$	$65-69$	$70-74$	$75-79$
No. of students	3	9	13	15	5	4	1

a) By using a suitable assumed mean, calculate
(i) the mean
(5mks) *Nrk*
(b) the variance
(3mks) *Nrk*
(c) the standard deviation
(2mks) *Nrk*
20. The displacement s metres of a particle moving along a straight line after t seconds is given by

$$
S=4-4 t-3 t^{2}-t^{3}
$$

a) Find
(i) Its speed when $t=1 / 2$
(3mks) *Nrk*
(ii) its initial acceleration
(2mks) *Nrk*
b) Calculate
(i) the time when 斯它 particle was momentarily at rest.
(3mks) *Nrk*
ii) its displacement by the time it comes to rest.
(2mks) *Nrk*21
Copy and complete the table below for the function $y=5+3 x-2 x^{2}$.
(2naks

x	-3.8	-2	-1	0	1	2	3	4
$-2 \mathrm{x}^{2}$	${ }_{9} 88$		-2	0	-2			-32
$5+3 \mathrm{x}$	-4 ${ }^{\text {d }}$		2	5		11	14	
y ,	-22			5		3		-15

s(a), वUse the values from the table to draw the graph of $y=5+3 x-2 x^{2}$ on the grid provided.
by Use your graph to solve the quadratic equation
(i) $5+3 \mathrm{x}-2 \mathrm{x}^{2}=0$ (3mks) *Nrk*
(ii) $2 \mathrm{x}^{2}-2 \mathrm{x}-3=0$
(2mks) *Nrk*
c) Determine the range of values of x which satisfy the inequality, $5+3 \mathrm{x}-2 \mathrm{x}^{2} \geq-2 .(2 \mathrm{mks}) * N r k *$
22. Water flows through a cylindrical pipe of diameter 3.5 cm at a speed of $45 \mathrm{~m} / \mathrm{minute}$.
a) Calculate the volume of water delivered by the pipe in one minute in litres. $(3 \mathrm{mks}){ }^{*} \mathrm{Nrk}$ *
b) A cylindrical storage tank of height 4 metres is filled by water from this pipe at the same rate of flow. Water started flowing at $8.00 \mathrm{a} . \mathrm{m}$. and was filled up at $2.50 \mathrm{p} . \mathrm{m}$. Calculate the area of the cross-section of this tank.
(4mks) *Nrk*
c) Water costs sh. 3.50 per thousand litres plus a fixed standing charge of sh.18.50. Calculate the cost of a family which consumes the capacity of this tank in one month.(3mks) *Nrk*
23. a) Complete the following table.

X^{0}	0	15	30	45	60	75	90	105	120	135
$\operatorname{Sin}(2 \mathrm{x})^{0}$	0	0.50			0.87					-1.00

(2mks) *Nrk*
b) Using a horizontal scale for x of 1 cm to 15 units and vertical scale for $\sin (2 \mathrm{x})^{0}$ of 5 cm to 1 unit, draw the graph of $\mathrm{y}=\sin 2 \mathrm{x}$ for $0^{0} \leq \mathrm{x} \leq 135^{\circ}$. (3mks) ${ }^{*} \mathrm{Nrk}$ *
c) By adding a suitable straight line to your graph, estimate values of x for which
$5 \sin (2 x)^{0}+\frac{x}{30}-2=0$.
24. A transport company required to transport 800 passengers and 60 tonnes of luggage. It has two kinds of vehicles, Buses which carry 60 passengers and 8 tonnes of luggage each, and lorries which can carry 90 passengers and 40 tonnes of luggage each. Only 10 buses and 8 lorries are available.
a) Write down the inequalities that satisfy the facts given above. Let x be the number of buses and y be the number of lorries.
(4mks) *Nrk*
b) (i) represent the inequalities formed graphically.
(5mks) *Nrk*
(ii) What is the least number of vehicles that can be used.
(1mk) *Nrk*

