121/2

MATHEMATICS

SECTION 1 (50 MARKS

Attempt all questions.

1. Factorise $x^{2}-y^{2}$, hence evaluate $3282^{2}-3272^{2}$
(3mks) *Nym *
2. Find $\cos ^{\circ} x-5$ in x, if $\tan x=3 / 4$ and $90^{\circ} \leq x \leq 360^{\circ}$ $(3 \mathrm{mks})$ *Nym *
3.

 up to the fourth term. Hence use your expansion to evaluate (1.02) ${ }^{6}$
$(4 \mathrm{mks}) * N y m$ *
The average of the first and fourth terms of a GP is 140 . Given that the first term is 64 . Find the common ratio.
5. Make b the subject of the formula.
$(3 \mathrm{mks}) * N y m *$
$\mathrm{A}=$
b d

6. Two variables P and Q are such that P varies partly as Q and partly as the square root of Q . Determine the equation connecting P and Q . When $\mathrm{Q}=16, \mathrm{P}=500$ and when $\mathrm{Q}=25, \mathrm{P}=800$ (4mks) *Nym *
7. A radio has a marked price of shs. 10,000. The shopkeeper can allow a discount of 15% on the marked price and still make a profit of 25% on the cost price. Find the cost price of the radio.
$(2 \mathrm{mks}) * N y m$ *.
8. Using a calculator, evaluate
$\sqrt[4]{\frac{4.562 \times 0.38}{0.82}} \quad$ giving your answer to 4 significant figures. $\quad(3 \mathrm{mks}) * N y m ~ * ~$
9. Eighteen labourers dig a ditch 80 m long in 5 days. How long will it take 24 labourers to dig a ditch 64 m long?

11. The matrices $\mathrm{A}=\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right] \quad$ and $\quad \mathrm{B}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{o} & \mathrm{c}\end{array}\right]$
are such that $\mathrm{AB}=\mathrm{A}+\mathrm{B}$
Find a, b, and c .
$(3 \mathrm{mks})$ *Nym *
12. Simplify
$2 \mathrm{x}^{2}-\mathrm{x}-1$
$x^{2}-1$
13. On map of scalce $1=25000$ a forest has an area of $20 \mathrm{~cm}^{2}$. What is the actual area in Km^{2}
. Determine BC if DC is a tangent.
14. In the figure below, $\mathrm{DC}=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$. Determine BC if DC is a tangent.

15. Evaluate without using logarithm tables.
$3 \log _{10}^{2}+\log _{10}^{750}-\log _{10}^{6}$
$(3 \mathrm{mks}) * N y m$ *
16. A bag contains 10 balls of which 3 are red, 5 are white and 2 green. Another bag contains 12 balls of which 4 are red, 3 are white and 5 are green. A bag is chosen at random and a ball picked at random from the bag. Find the probability that the ball so chosen is red.
(4mks). *Nym *

SECTION II (50 MARKS)

Answer any five questions in this section.
17. Income tax is charged on annual income at the rates shown below.

Taxable Income K£ Rate (shs per K£)
$1-1500 \quad 2$
1501-3000 3
$3001-4500 \quad 5$
4501-6000 7
6001-7500 9
7501 - $9000 \quad 10$
$9001-12000 \quad 12$
Over $12000 \quad 13$
A certain headmaster earns a monthly salary of Ksh. 8570 . He is housed in the school and as a result, his taxable income is 15% more than his salary. He is entitled to a family tax relief of Kshs. 150 per month.
(a) How much tax does he pay in a year.
$(6 \mathrm{mks}) * \mathrm{Nym}$
*
(b) From the headmaster's salary the following deductions are also made every month;
W.C.P.S $\quad 2 \%$ of gross salary
N.H.I.F Kshs. 20

House rent, water and furniture charges Kshs. 246
Calculate the headmaster's net salary.
(4 mks) *Nym *
18. (a) (i) Taking the radius of the earth, $\mathrm{R}=6370 \mathrm{~km}$ and $\pi=22 / 7$ calculate the shorter distance between the two cities $\mathrm{P}\left(60^{\circ} \mathrm{N}, 29^{\circ} \mathrm{W}\right)$ and $\mathrm{Q}\left(60^{\circ} \mathrm{N}, 31^{\circ} \mathrm{E}\right)$ along the parallel of latitude.
$(3 \mathrm{mks})$ *Nym *
(ii) If it is 1200 Hrs at P , what is the local time at Q .
(3mks). *Nym *
(b) An aeroplane flew due South from a point $\mathrm{A}\left(60^{\circ} \mathrm{N}, 45^{\circ} \mathrm{E}\right)$ to a point B. The distance covered
by the aeroplane was 800 km . Determine the position of B .
(4mks).
19. A and B are connected by the equation $\mathrm{B}=\mathrm{KA}+\mathrm{M}$ where K and M are constants. The table below shows the values of ${\underset{\partial}{r}}^{\text {人 }}$ and corresponding values of B .

A	$1.5 e^{\text {e }}$	3.0	4.5	6.0	7.5	9.0
B	$8 Q^{2}$	11	14	17	20	23

(a) D	a sur	-	f	,	ovi					s)	
(b) D	min	radi	of	ine.						s)	
(c) S	${ }^{5}$	of K	, M	nce	S B	erms				s)	
(d) F	U	es	ate	B wh	3.6						
)	$\mathrm{B}=$								s)	
($(\mathrm{a}){ }^{\text {d }}$		able	y	x						ks) *	
	0	30	60	90	120	150	180	210	240	270	300
nx	0			1.0		0.5		-0.5			-0.87
$\cos \mathrm{x}$	2			0		-1.73		-1.73			1.0
	2			1.0		-1.23		-2.23			0.13

(b) Draw the graph of $y=\operatorname{Sin} x+2 \cos x$.
(3mks) *Nym *
(c)Solve $\sin x+2 \cos x=0$ using the graph.
(2mks) *Nym *
(d) Find the range of values of x for which $y \leq-0.5$
(3mks). *Nym *
21. A bag contains 3 red, 5 white and 4 blue balls. Two balls are picked without replacement.

Determine the probability of picking.
(a) 2 red balls
$2 \mathrm{mks} * N y m$ *
(b) Only one red ball
$2 \mathrm{mks} * N y m$ *
(c) At least a white ball
(d) Balls of same colour.
$2 \mathrm{mks} * \mathrm{Nym}$ *
(e) Two white balls
22. (a) Draw the graph of the function

2 mks *Nym *
2 mks *Nym *
$y=10+3 x-x^{2}$ for $-2 \leq x \leq 5$
(b) use of the trapezoidal rule with 5 stripes, find the area under the curve from $x=-1$ to $x=4$.
$\begin{array}{ll}\text { (c) Find the actual area under the curve from } \mathrm{x}=-1 \text { to } \mathrm{x}=4 . & 2 \mathrm{mks} * N y m * \\ \text { (d) Find the percentage error introduced by the approximation. } & 2 \mathrm{mks}^{* N y m} *\end{array}$
23. The figure below is a cuboid ABCDEFGH such that $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and CF 5 cm .

Determine (a) the length
(i) AC
(ii) AF

(b) The angle AF makes with the plane ABCD .
(c) The angle AEFB makes with the base ABCD.
(3mks) *Nym *
(3mks) *Nym *
24. A manager wishes to hire two types of machine. He considers the following facts.

	Machine A	Machine B
Floor space	$2 \mathrm{~m}^{2}$	$3 \mathrm{~m}^{2}$
Number of men required to operate	4	3

He has a maximum of $24 \mathrm{~m}^{2}$ of floor space and a maximum of 36 men available. In addition he is not allowed to hire more machines of type B than of type A.
(a) If he hires x machines of type A and y machines of type B, write down all the inequalities that satisfy the above conditions.
$3 \mathrm{mks} *$ Nym *
(b) Represent the inequalities onthe grid and shade the unwanted region.
(c) If the profit from machine is sh. 4 per hour and that from using B is kshs8 per hour. What number of machines of each type should the manager choose to give the maximum profit?

