SECTION I (50 MARKS)
Aftempt ALL the questions in this section

1. Evaluate

2. Finnd the sum of money which amount to sh. 33,320 in 3 years at $12 \%$ p.a simple interest. 3 mks 3. 今人 , अiven that $\mathrm{T}=\underline{1} \sqrt{2}$, express y in terms of $\mathrm{t}, \mathrm{x}$ and z . $3 \mathrm{mks} * T \mathrm{so}$ *
3. Given that $\underline{5}+\sqrt{ } 20=\mathrm{k} \sqrt{ } 5$, determine the value of k . $3 \mathrm{mks} * T s o$ *

5
a) Expand $(1+3 x)^{5}$

2mks*Tso*
b) Hence by using the first 4 terms of the expansion, evaluate $0.97^{5}$. $2 \mathrm{mks} * T s o$ *
6. Find the equation of the locus of points equidistant from the points $(-1,3)$ and $(2,4)$ in the form $y=m x+c$ 3 mks *Tso*
7. Under a transformation presented by the matrix mapped onto an image. Find the area of the image $\left.\begin{array}{ll}1 & 3\end{array}\right)$ 3mks*Tso*
8. Wanjiku pays for a car on hire purchase in 15 monthly instalments. The cash price of the car is Ksh. 300,000 and the interest rate is $15 \%$ p.a. A deposit of Ksh 75,000 is made Calculate her monthly repayments.

4mks*Tso*
9. Solve for $\theta$ in the equation $2 \sin (2 \theta+10)=0$ for $\mathrm{O}^{\circ} \leq \theta \leq 360^{\circ}$. 3 mks *Tso*
10. The surface area of a sphere is given as $4 \pi r^{2}$. Find the relative error in the area if the relative error in $\pi$ is 0.36 and the relative error in $r$ is 0.24 .
$3 \mathrm{mks} * T s o^{*}$
11. Solve for x given $\log _{125} \mathrm{x}+\log _{125} 5 \mathrm{x}=1 / 3$. $4 \mathrm{mks} * T s o$ *
12. A tank can be filled by a tap A in 20 minutes. The same tank can be emptied when full in 30 minutes by $\operatorname{tap} B$. Both taps are turned on at the same time and $B$ turned off after 10 minutes starting with an empty tank. Find the time taken to fill the tank. 3mks*Tso*
13. In the figure below, chords AB and CD are produced to meet at $\mathrm{T} . \mathrm{AB}=4 \mathrm{~cm}, \mathrm{BT}=5 \mathrm{~cm}$ and $C D=6 \mathrm{~cm}$. Find the length of DT.

3mks*Tso*

14. Find the value of $t$ if

15. A rectanguldr plot has a wall on one side. 64 m of fencing wire to be used to fence the three sides of the prot. The Length of the fence perpendicular to the wall is y metres. Find the value of $y$ which gives a maximum area.

3mks*Tso*
16. Thespoints A and $B$ are $(1,5)$ and $(-3,7)$ respectively. If $A B$ is a diameter of the circle, find the equation of this circle.

## SECTION II ( 50 MARKS) Answer ANY FIVE questions in this section

17. A man goes to work by either matatu or by bus. If he goes by matatu, the probability that he will be late is $1 / 5$ while if he goes by bus, the probability that he will be late is $1 / 8$.
a) Suppose he tosses a coin to decide whether to go by matatu or by bus, what is the probability that he will be late.
b) If he travels by matatu for four successive days what is the probability that he will be late
(i) every day
ii) on any three days.
18. Mrs Okiring earns a salary of Kshs. 20,480 per month. In addition, she is given;

House allowance of ksh 20,000
Medical allowance of ksh 2476
Commuting allowance of ksh 318
She is also entitled to a tax relief of ksh. $1162 \mathrm{p} . \mathrm{m}$.
The table gives the rate of taxation in use by them

| Taxable income | rate |
| :--- | :--- |
| $0-10,164$ | 10 |
| $10,165-19,740$ | 15 |
| $19,741-29,316$ | 20 |
| $29,317-38,892$ | 25 |
| Over 38,892 | 30 |

a) Calculate his taxable income per month.
$2 \mathrm{mks} * T s o^{*}$
b) Find how much tax she pays each month

5mks*Tso*
c) Determine her net salary if she also has the following deductions made from her monthly salary.

WCPS - sh. 392.40
Co-op loan - sh. 1970
Union dues - sh. 200
19. Use ruler and a pair of compasses only in this question
a) Construct triangle ABC such that $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{AC}=\mathrm{BC}$ and angle $\mathrm{ACB}=135^{\circ} 4 \mathrm{mks} * T s o^{*}$
b) On one side only construct the locus of $P$ such that:
i) $\angle \mathrm{APB}=67.5^{\circ}$

1 mk *Tso*
ii) area of triangle, $\mathrm{APB}=9 \mathrm{~cm}^{2} \quad 3 \mathrm{mks} * T s o *$
c) i) Locate $\mathrm{P}_{1}$ and $\mathrm{P}_{2}$ the two possible positions of P which satisfy the two conditions above
ii) Measure the distance between $\mathrm{P}_{1}$ and $\mathrm{P}_{2}$.
20. a) Complete the table below for $\mathrm{y}=\sin 2 \mathrm{x}$ and $\mathrm{y}=\sin (2 \mathrm{x}+30)$ giving values to 2d.p

| X | 0 | 15 | 230 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | 150 | 165 | 180 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sin 2 x | 0 | $\partial$ |  |  | 0.87 |  |  |  | -0.87 |  |  |  | 0 |
| Sin ( $2 \mathrm{x}+30$ ) | 0.5 | 5 |  |  | 0.5 |  |  |  | -1 |  |  |  | 0.5 |

b) Draw the graphs of $y=\sin 2 x$ and $y=\sin (2 x+30)$ on the axis.

4mks*Tso*
c) Use the griaph to solve $\sin (2 x+30)-\sin 2 x=0$

1 mk *Tso*
d) Deternine the transformation which maps $\sin 2 x$ onto $\sin (2 x+30)$

1 mk *Tso*
e) Stafe thee period amplitude of $y=\sin (2 x+30)$
$2 \mathrm{mks} * T s o$ *
21. Thé figừre below shows a triangle OAB in which point $P$ divides line $O A$ in the ratio $1: 2$ and 90 inf Q divides OB in the ratio 1:2. AQ and PB intersect at point R .

a) Given that $\mathrm{OA}=12 \mathrm{a}$ and $\mathrm{OB}=12 \mathrm{~b}$. Express in terms of a and b .
i) $\mathbf{A B}$
$1 \mathrm{mk} * T s o^{*}$
ii) $\mathbf{P Q}$ $1 \mathrm{mk} * T s o^{*}$
b) Given that $\mathrm{PR}=1 / 4 \mathrm{~PB}$, express in terms of $\mathbf{a}$ and $\mathbf{b}$

| i) $\mathbf{P B}$ | $1 \mathrm{mk} * T s o^{*}$ |
| :--- | :--- |
| ii) $\mathbf{A R}$ | $2 \mathrm{mks} * T s o^{*}$ |
| iii) $\mathbf{Q R}$ | $2 \mathrm{mks} * T s o^{*}$ |
| c) Show that points $\mathrm{Q}, \mathrm{R}$ and A lie in a straight line. | $3 \mathrm{mks} * T s o^{*}$ |

22. The manager of Utamu yote Hotel has enough funds to buy a total of 100 crates of soft drinks of type A and type B. He wishes to buy at least twice as many crates of type A as of type B. He wants to buy a maximum of 80 crates of type $A$ and atleast 10 crates of type $B$. Letting $x$ represent the number of crates of type $A$ and $y$ the number of crates of type $B$.
a) Write down all the inequalities which represent the above information. $4 \mathrm{mks} * T s o$ *
b) The profit from the sale of a crate of type $A$ is sh. 60 while that of type $B$ is sh. 40 , find the number of crates he should buy to maximize his profit. 4 mks *Tso*
c) Find the profit

2mks*Tso*
23. A particle starts from rest at a point A and moves along a straight line coming to rest at another point B . During the motion, its velocity ( $\mathrm{vm} / \mathrm{s}$ ) after time $(\mathrm{t} \mathrm{sec})$ is given by $\mathrm{v}=9 \mathrm{t}^{2}-2 \mathrm{t}^{3}$
Calculate:
a) the time taken for the particle to reach B.

2 mks *Tso*
b) the distance traveled during the first two seconds. 2 mks *Tso*
c) the time taken for the particle to attain its maximum velocity. 2mks*Tso*
d) the maximum velocity attained 2 mks *Tso*
e)the maximum acceleration attained during the motion.

2mks*Tso*
24. a) A stretch of a river has parallel straight banks running East - West and is 100 m wide. A and B are two points on the north bank and C is a point on the opposite bank. The bearing of C from $A$ and $B$ are $140^{\circ}$ and $210^{\circ}$ respectively.

Calculate
i) the length of AC
ii) the distance AB correct to the nearest metre.
b) An aeroplane A flies due north from a point on latitude $40^{\circ} \mathrm{N}$ and at a steady speed of 480 knots. Aeroplane B starts at the same time from a point at $\left(50^{\circ} \mathrm{N}, 30^{\circ} \mathrm{E}\right)$ and flies westwards along the parallel of latitude at a steady speed of 400 knots.
(i) What is the latitude of A (in degrees and minutes) When B reaches a point on $10^{0} \mathrm{~W}$

