SECTION I (50 MARKS) Attempt ALL the questions in this section

1. Evaluate

5

te $20^{-1} \div 1$ $2^{-1} \div 1$ $2^{-1} \div$ 3mks*Tso*

2. Find the sum of money which amount to sh. 33,320 in 3 years at 12% p.a simple interest. 3mks 3. So the fiven that $T = \frac{1}{2}\sqrt{\frac{2}{x+y}}$, express y in terms of t, x and z. 3mks**Tso**

- Given that $5 + \sqrt{20} = k\sqrt{5}$, determine the value of k. 3mks*Tso* $\sqrt{5}$ a) Expand $(1+3x)^5$ 2mks*Tso*
 - b) Hence by using the first 4 terms of the expansion, evaluate 0.97^5 . 2mks*Tso*
- 6. Find the equation of the locus of points equidistant from the points (-1,3) and (2,4) in the form y = mx + c 3mks*Tso*
- 7. Under a transformation presented by the matrix mapped onto an image. Find the area of the image $\begin{pmatrix} -1 & 4 \\ 1 & 3 \end{pmatrix}$, an object whose area is 21cm² is 3mks**Tso**
- Wanjiku pays for a car on hire purchase in 15 monthly instalments. The cash price of the car is Ksh. 300,000 and the interest rate is 15% p.a. A deposit of Ksh 75,000 is made Calculate her monthly repayments.
 4mks**Tso**
- 9. Solve for θ in the equation $2 \sin(2\theta + 10) = 0$ for $O^{\circ} \le \theta \le 360^{\circ}$. 3mks*Tso*
- 10.The surface area of a sphere is given as $4\pi r^2$. Find the relative error in the area if the relative
error in π is 0.36 and the relative error in r is 0.24.3mks**Tso**
- 11. Solve for x given $\log_{125} x + \log_{125} 5x = \frac{1}{3}$. 4mks*Tso*
- A tank can be filled by a tap A in 20 minutes. The same tank can be emptied when full in 30 minutes by tap B. Both taps are turned on at the same time and B turned off after 10 minutes starting with an empty tank. Find the time taken to fill the tank.
- 13. In the figure below, chords AB and CD are produced to meet at T. AB = 4cm, BT = 5cm and CD = 6cm. Find the length of DT.3mks*Tso*

© The Teso District Mock Examination 2006 Mathematics 121/2

TURN OVER

Tips on passing KCSE subscribe freely @ http://www.joshuaarimi.com Support thru' M-pesa 0720502479. Connect with Joshua Arimi on facebook. Not 4 resale 14. Find the value of t if

- 15. A rectangular plot has a wall on one side. 64m of fencing wire to be used to fence the three sides of the plot. The Length of the fence perpendicular to the wall is y metres. Find the value of y which gives a maximum area. 3mks*Tso*
- The points A and B are (1,5) and (-3,7) respectively. If AB is a diameter of the circle, find the 16. equation of this circle. 3mks**Tso**

SECTION II (50 MARKS) Answer ANY FIVE questions in this section

For sit hore tree 100000. A man goes to work by either matatu or by bus. If he goes by matatu, the probability that he

will be late is $\frac{1}{5}$ while if he goes by bus, the probability that he will be late is $\frac{1}{8}$.

a) Suppose he tosses a coin to decide whether to go by matatu or by bus, what is the

probability that he will be late.

- b) If he travels by matatu for four successive days what is the probability that he will be late
- (i) every day
- ii) on any three days.
- 18. Mrs Okiring earns a salary of Kshs. 20,480 per month. In addition, she is given;

House allowance of ksh 20,000 Medical allowance of ksh 2476

Commuting allowance of ksh 318

She is also entitled to a tax relief of ksh. 1162 p.m.

The table gives the rate of taxation in use by them

Taxable income	rate
0-10,164	10
10,165 - 19,740	15
19,741 - 29,316	20
29,317 - 38,892	25
Over 38,892	30

a) Calculate his taxable income per month.

b) Find how much tax she pays each month

2mks*Tso* 5mks*Tso*

c) Determine her net salary if she also has the following deductions made from her monthly salary.

WCPS - sh. 392.40 Co-op loan - sh. 1970 Union dues - sh. 200

- 19. Use ruler and a pair of compasses only in this question
 - a) Construct triangle ABC such that AB = 6cm, AC=BC and angle $ACB = 135^{\circ}$ 4mks**Tso** b) On one side only construct the locus of P such that: i) < APB = 67.5⁰ 1mk*Tso* ii) area of triangle, $APB = 9cm^2$ 3mks*Tso*
 - c) i) Locate P_1 and P_2 the two possible positions of P which satisfy the two conditions above

1mk*Tso*

1mk*Tso* ii) Measure the distance between P_1 and P_2 .

© The Teso District Mock Examination 2006 Mathematics 121/2 **TURN OVER**

Tips on passing KCSE subscribe freely @ ht≹p://www.joshuaarimi.com Support thru' M-pesa 0720502479. Connect with Joshua Arimi on facebook. Not 4 resale.

20.	a) Comp	lete the	table b		for $v=si$	in 2x an	d v=sin	(2x + 1)	30) oivi	ng valu	es to ')d n		
-0. X	u) comp			3 0	45	60	75	90	105	120	135	150	165	180
Si	n 2x	0	ő		-	0.87				-0.87				0
Si	n(2x+30)	0.5	59			0.5				-1				0.5
			e ^{e*}									2ml	ks*Ts	0*
b) Draw the graphs of y=sin 2x and y = sin $(2x + 30)$ on the axis. 4mk							ks*Ts	0*						
	c) Use the example to solve sin $(2x + 30) \sin 2x = 0$ $1mk*Tso*$								*					
	d) Determine the transformation which maps sin 2x onto sin $(2x + 30)$ 1mk* <i>Tso</i> *								*					
	e) State	the peri	od ampl	itude	of $y = s$	$\sin(2x)$	+ 30)			<i>,</i>		2ml	ks* <i>Ts</i>	0*
1.	Thefigu	te below	v shows	a tria	ngle O	AB in w	which po	oint P di	vides li	ne OA i	in the	ratio	1:2 an	d
	point O	livides (OB in th	e rati	o 1:2	AO and	PB inte	ersect at	t point F	ξ.				
c) Ose integraph to solve sin $(2x + 30)$ -sin $2x = 0$ d) Determine the transformation which maps sin 2x onto sin $(2x + 30)$ e) State the period amplitude of y = sin $(2x + 30)$ 21. The figure below shows a triangle OAB in which point P divides line OA in the ratio 1:2 and point Q divides OB in the ratio 1:2. AQ and PB intersect at point R. 4. A. A. A. A. A. A. A. A. A. A														
a) Given that $OA = 12a$ and $OB = 12b$. Express in terms of a and b.														
	i) AB		~	,		~			~	~		1ml	ĸ∗Tso	*
	ii) PQ												k* <i>Tso</i>	

11) PQ	1mk* <i>Tso</i> *
b) Given that $PR = \frac{1}{4} PB$, express in terms of a and b	
i) PB	1mk* <i>Tso</i> *
ii) AR	2mks* <i>Tso</i> *
iii) QR	2mks* <i>Tso</i> *
c) Show that points Q, R and A lie in a straight line.	3mks* <i>Tso</i> *
The manager of Utamu yote Hotel has enough funds to buy a total of 100 crates of	of soft drinks
of type A and type B. He wishes to buy at least twice as many crates of type A a	s of type B.

- He wants to buy a maximum of 80 crates of type A and atleast 10 crates of type B. Letting x represent the number of crates of type A and y the number of crates of type B. a) Write down all the inequalities which represent the above information. 4mks*Tso* b) The profit from the sale of a crate of type A is sh. 60 while that of type B is sh. 40, find the 4mks*Tso* number of crates he should buy to maximize his profit. c) Find the profit 2mks*Tso*
- 23. A particle starts from rest at a point A and moves along a straight line coming to rest at another point B. During the motion, its velocity (vm/s) after time (t sec) is given by $v = 9t^2 - 2t^3$

Calculate:

22.

a) the time taken for the particle to reach B.	2mks* <i>Tso</i> *				
b) the distance traveled during the first two seconds.	2mks* <i>Tso</i> *				
c) the time taken for the particle to attain its maximum velocity.	2mks* <i>Tso</i> *				
d) the maximum velocity attained	2mks* <i>Tso</i> *				
e) the maximum acceleration attained during the motion.	2mks* <i>Tso</i> *				
24. a) A stretch of a river has parallel straight banks running East – West and i	s 100m wide.				
A and B are two points on the north bank and C is a point on the opposite bank. The bearing of C					
from A and B are 140° and 210° respectively.	-				

ri una D uno rito una 210 respectivery.	
Calculate	
i) the length of AC	2mks* <i>Tso</i> *
ii) the distance AB correct to the nearest metre.	4mks* <i>Tso</i> *
b) An aeroplane A flies due north from a point on latitude 40° N	
480knots. Aeroplane B starts at the same time from a point a	at $(50^{\circ}N, 30^{\circ}E)$ and flies
westwards along the parallel of latitude at a steady speed of	

TURN OVER

Tips on passing KCSE subscribe freely @ ht&p://www.joshuaarimi.com Support thru' M-pesa 0720502479. Connect with Joshua Arimi on facebook. Not 4 resale.

(i) What is the latitude of A (in degrees and minutes) When B reaches a point on 10⁰W 4mks*750*

© The Teso District Mock Examination 2006 Mathematics 121/2

TURN OVER

Tips on passing KCSE subscribe freely @ ht&p://www.joshuaarimi.com Support thru' M-pesa 0720502479. Connect with Joshua Arimi on facebook. Not 4 resale.