MATHEMATICS
121/1
SECTION I (50 MARKSS) $)^{S}$
Answer ALL the questions in this section

1. Evaluate

$$
\frac{\sigma^{\sigma^{x}} 0^{2} 4 \times 6+\frac{1}{25} \div 0.05+\frac{1}{5}}{(-3) \div(-6)+(23)-6 \text { of } 3}
$$

2. Refthen a certain number is divided by 30,45 , or 54 , there is always a remainder of 21 . Find the く离, deast number.
$3 \mathrm{mks} * U G^{*}$
3. Without using calculators or mathematical tables, find the value of; $3 \mathrm{mks} * U G^{*}$
$\frac{\sqrt{45} \times(2.04)^{2}}{\sqrt{0.05 \times 2.89}}$
4. Solve for b in the equation.

$$
5^{2 b}+10\left(5^{b}\right)=3
$$

4mks*UG*
5. A trader imported a camera for which she paid import duty at 40% of the purchase price. She later sold it to a customer giving 8% discount. If the customer paid sh. 18,032 for the camera, find the purchase price. $3 \mathrm{mks}^{*} U G^{*}$
6. Solve the simultaneous equations; $4 \mathrm{mks} * U G^{*}$

$$
\begin{gathered}
2 \log ^{\mathrm{s}}=\log 2+\log \mathrm{t} \\
2^{\mathrm{s}}=4^{\mathrm{t}}
\end{gathered}
$$

7. In the figure below angle $\mathrm{RPS}=40^{\circ}$ angle $\mathrm{PRS}=54^{\circ}$ and angle $\mathrm{QSR}=42^{\circ}$ Find angle PRQ .
$2 \mathrm{mks} * U G^{*}$

8. Solve the equation
$3 \mathrm{mks} * U G^{*}$

$$
\frac{1}{4 x}=\frac{5}{6 x}-7
$$

9. Use reciprocal and square root tables to evaluate, to 4 significant figures, the expression:
$3 \mathrm{mks} * U G^{*}$

$$
\frac{5}{0.04796}+\sqrt{583.6}
$$

10. A cylindrical jar has a diameter of 20 cm . The area of the curved surface is $1200 \mathrm{~cm}^{2}$, Find
(i) The height of the jar correct to 1 decimal place.
$2 \mathrm{mks} * U G^{*}$
$2 \mathrm{mks} * U G^{*}$
11. Find the equation of a line passing through $(2,-3)$ and is perpendicular to the line $4 y-6 x+5=0$

$$
3 \mathrm{mks}^{*} U G^{*}
$$

TURN OVER

The above diagram shows an open cuboid. Find the distance between points E and X on the surface of the solid given that GX is 6 cm .
13. A flower garden is in the form of the trapezium shown below. Find the area of the garden in m^{2}.

14. Given the vectors $\mathbf{a}=6 \mathbf{i}+8 \mathbf{j}$

$$
\mathbf{b}=3 \mathbf{i}-9 \mathbf{j}
$$

$$
\text { and } c=4 i+j
$$

Find the value of h and k such that $\mathrm{ha}+\mathrm{kb}=\mathbf{c}$.
$2 \mathrm{mks} * U G^{*}$
15. The sum of digits of a two digit number is 13 . When the number is subtracted from the number formed by reversing the digits, the difference is 27 . Find the number. $4 \mathrm{mks}^{*} U G^{*}$
16. The area of a triangular seed bed is 0.024 hactares. If its base is 30 m , find the perpendicular height of the plot.
$2 \mathrm{mks} * U G^{*}$
SECTION II (50 MARKS)
Answer any five questions in this section
17. The length of the common chord of two intersecting circles of radius 10 cm and 12 cm is 6 cm .
a) Calculate the angles subtended by the chord at the center of the two circles. $4 \mathrm{mks}^{*} U G^{*}$
b) Calculate the area common to the two circles.
$6 \mathrm{mks} * U G^{*}$
18. a) Draw triangle ABC in which $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=5.5$ and $\angle \mathrm{B}=60^{\circ}$. (Use a pair of compasses and a ruler only).
$2 \mathrm{mks} * U G^{*}$
Measure AC
b) Four towns P, Q, R, and S are such that town Q is 120 km due east of town P. Town R is 160 km due north of town Q . Town S is on a bearing of 330° from P and on a bearing of 300° from R. Use a ruler and compasses ONLY for all constructions in this question.
Taking a scale of $1 \mathrm{~cm}=50 \mathrm{~km}$, construct a scale drawing to show the positions of towns P, Q,R, and S.
$5 \mathrm{mks} * U G^{*}$
Use your scale drawing to determine
(i) the distance SP
$1 \mathrm{mk} * G^{*}$
(ii) the distance SR $1 \mathrm{mk} * U G^{*}$
(iii) the bearing of town S from town Q .
$1 \mathrm{mk} * U G^{*}$
19. The figure below shows two circles that intersect at points W and X . Point A is the center of the smaller circle and lies on the circumference of the larger circle. BXZ and BWY are straight lines. Angle $\mathrm{WBX}=55^{\circ}$ and angle $\mathrm{WYZ}=80^{\circ}$.

TURN OVER

Find the following angles giving reasons.
a) the obtuse angle WAX
$2 \mathrm{mks} * U G^{*}$
b) angle WYX
c) angle XWZ
$2 \mathrm{mks} * U G^{*}$
d) angle WXA
$2 \mathrm{mks} * U G^{*}$
e) angle AXB
$2 \mathrm{mks} * U G^{*}$
$2 \mathrm{mks} * U G^{*}$
20. The table below shows the number of letters collected from the post office by a school messenger during a school year.

Letters per day	$6-10$	$11-15$	$16-20$	$21-25$	$26-30$	$31-35$	$36-40$	$41-45$	$46-50$	$51-55$
Frequency	5	19	21	23	25	27	20	25	13	12

(i) State the modal class
(ii) Estimate the median of this data.
(iii) Estimate the mean of this data.
iv) On the grid provided, draw a histogram to represent this data.

$$
\begin{aligned}
& 1 \mathrm{mk}^{*} U G^{*} \\
& 4 \mathrm{mks}^{*} U G^{*} \\
& 3 \mathrm{mks}^{*} U G^{*} \\
& 2 \mathrm{mks}^{*} U G^{*}
\end{aligned}
$$

21. A triangle has vertices $\mathrm{A}(-4,-1) \mathrm{B}(-1,-3)$ and $\mathrm{C}(-2,-1)$
(a) Draw triangle ABC on the Cartesian plane.
$1 \mathrm{mk} * U G^{*}$
(b) Construct the image triangle $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ of $\triangle \mathrm{ABC}$ under reflection in the line $\mathrm{y}=-\mathrm{x}$ $3 \mathrm{mks} * U G^{*}$
(c) Construct the image triangle $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11}$ of $\Delta \mathrm{A}{ }^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ under rotation of $+90^{0}$ about the origin
(d) Construct the image triangle $\mathrm{A}^{111} \mathrm{~B}^{111} \mathrm{C}^{111}$ of $\Delta \mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11}$ under enlargement scale factor -2 centre $(-1,0)$ $3 \mathrm{mks} * U G^{*}$
22. A solid cylinder has a radius of 21 cm and a height of 18 cm . A conical hole of radius r is drilled in the cylinder on one of the end faces. The conical hole is 12 cm deep.If the material removed from the hole is $2 / 3 \%$ of the volume of the cylinder, find; (Use $\pi=3.142$)
(i) the surface area of the hole.

$$
5 \mathrm{mks}^{*} U G^{*}
$$

(ii) the radius of a spherical ball made out of the material. $3 \mathrm{mks} * U G^{*}$
(iii) the surface area of the spherical ball. $2 \mathrm{mks} * U G^{*}$
23. A bus left Nairobi at 7.00 am and travelled towards Eldoret at an average speed of $80 \mathrm{~km} / \mathrm{hr}$. At 7.45am a car left Eldoret towards Nairobi at an average speed of $120 \mathrm{~km} / \mathrm{hr}$. The distance between Nairobi and Eldoret is 300 km Calculate
a) the time the bus arrived at Eldoret

$$
2 \mathrm{mks}^{*} U G^{*}
$$

b) the time of the day the two met.
$4 \mathrm{mks} * U G^{*}$
c) the distance from Nairobi where the two met.
$2 \mathrm{mks} * U G^{*}$
d) the distance of the bus from Eldoret when the car arrived at Nairobi. $2 \mathrm{mks} * U G^{*}$
24.(i) The figure below shows a sketch of Mr. Wangamati's Orchard. The bearing and distances of the points on it's boundaries are marked A,B,C,D,E,F,G and H from an external point P and are tabulated.

TURN OVER

Using a scale of 1 cm represents 10 m draw an accurate plan of Mr. Wangamati's Orchard. Hence find;
$5 \mathrm{mks} * U G^{*}$
a) the bearing of A from C
b) the bearing and the distance of C from F .
ii) A land surveyor recorded the measurement of a small plot in a field work using base lines
$\mathrm{AB}=75 \mathrm{~cm}, \mathrm{BC}=100 \mathrm{~cm}$ and $\mathrm{CA}=100 \mathrm{~cm}$ as shown below;

R9	B	W5	C	Z17	A
Q7	55	V 6	55	Y 5	70
P15	42	U 7	70	X 6	50
A	30	S 10	60		25
	A		20		C

Using a scale of 1 cm represents 5 m draw the map of the field and hence work out it's area in hectares.
$5 \mathrm{mks} * U G^{*}$

TURN OVER

