MATHEMATICS

121 / 1

SECTION I (50 MARKS)

Answer ALL the questions in this section

Evaluate

When a certain number is divided by 30, 45, or 54, there is always a remainder of 21. Find the deast number. 3mks*UG*

Without using calculators or mathematical tables, find the value of;

$$3$$
mks $*UG*$

3mks*UG*

$$\frac{\sqrt{45} \times (2.04)^2}{\sqrt{0.05} \times 2.89}$$

Solve for b in the equation. $5^{2b} + 10(5^b) = 3$.

$$5^{2b} + 10(5^b) = 3$$
.

4mks*UG*

- 5. A trader imported a camera for which she paid import duty at 40% of the purchase price. She later sold it to a customer giving 8% discount. If the customer paid sh. 18,032 for the camera, find the purchase price. 3mks*UG*
- 6. Solve the simultaneous equations;

$$2 \log^{s} = \log 2 + \log t$$
$$2^{s} = 4^{t}$$

In the figure below angle RPS = 40° angle PRS = 54° and angle QSR = 42° Find angle PRQ. 7.

2mks*UG*

8. Solve the equation

$$\frac{1}{4x} = \frac{5}{6x} - 7$$

9. Use reciprocal and square root tables to evaluate, to 4 significant figures, the expression:

3mks*UG*

$$\frac{5}{0.04796}$$
 + $\sqrt{583.6}$

- A cylindrical jar has a diameter of 20cm. The area of the curved surface is 1200cm², Find 10.
 - (i) The height of the jar correct to 1 decimal place.

2mks*UG*2mks*UG*

(ii) The volume of the jar correct to 4 significant figures.

Find the equation of a line passing through (2,-3) and is perpendicular to the line 4y - 6x + 5 = 011.

3mks*UG*

TURN OVER

Revision Past Papers and G.

G.

73.

The above diagram shows an open cuboid. Find the distance between points E and X on the surface of the solid given that GX is 6cm. 3mks*UG*

13. A flower garden is in the form of the trapezium shown below. Find the area of the garden in m^2 . 4mks*UG*

14. Given the vectors

$$\mathbf{a} = 6\mathbf{i} + 8\mathbf{j}$$

$$\mathbf{b} = 3\mathbf{i} - 9\mathbf{j}$$

and
$$c = 4i + j$$

Find the value of h and k such that $h\mathbf{a} + k\mathbf{b} = \mathbf{c}$.

2mks*UG*

- 15. The sum of digits of a two digit number is 13. When the number is subtracted from the number formed by reversing the digits, the difference is 27. Find the number. 4mks*UG*
- 16. The area of a triangular seed bed is 0.024 hactares. If its base is 30m, find the perpendicular height of the plot. 2mks*UG*

SECTION II (50 MARKS)

Answer any five questions in this section

- 17. The length of the common chord of two intersecting circles of radius 10cm and 12cm is 6cm.
 - a) Calculate the angles subtended by the chord at the center of the two circles. $4\text{mks}*UG^*$
 - b) Calculate the area common to the two circles. 6mks*UG*
- 18. a) Draw triangle ABC in which AB=6cm, BC = 5.5 and <B= 60° . (Use a pair of compasses and a ruler only). 2mks*UG* Measure AC
- b) Four towns P,Q,R, and S are such that town Q is 120km due east of town P. Town R is 160km due north of town Q. Town S is on a bearing of 330^0 from P and on a bearing of 300^0 from R. Use a ruler and compasses ONLY for all constructions in this question. Taking a scale of 1cm = 50km, construct a scale drawing to show the positions of towns P,Q,R, and S. 5mks*UG*

Use your scale drawing to determine

(i) the distance SP 1mk*UG*(ii) the distance SR 1mk*UG*

(iii) the bearing of town S from town Q. 1 mk * UG *

19. The figure below shows two circles that intersect at points W and X. Point A is the center of the smaller circle and lies on the circumference of the larger circle. BXZ and BWY are straight lines. Angle WBX = 55° and angle WYZ = 80° .

TURN OVER

Find the following angles giving reasons.

a) the obtuse angle WAX	2mks*UG*
b) angle WYX	2mks*UG*
c) angle XWZ	2mks*UG*
d) angle WXA	2mks*UG*
e) angle AXB	2mks*UG*

20. The table below shows the number of letters collected from the post office by a school messenger during a school year.

Le	etters per	6 – 10	11 – 15	16 - 20	21 - 25	26 - 30	31 - 35	36 - 40	41 - 45	46 - 50	51 – 55
da	ıy										
Fr	requency	5	19	21	23	25	27	20	25	13	12

(i) State the modal class

1mk**UG**

(ii) Estimate the median of this data.

4mks*UG*

(iii) Estimate the mean of this data.

3mks*UG*

iv) On the grid provided, draw a histogram to represent this data.

2mks*UG*

- 21. A triangle has vertices A(-4,-1) B(-1,-3) and C(-2,-1)
 - (a) Draw triangle ABC on the Cartesian plane.

1mk**UG**

- (b) Construct the image triangle A 1 B 1 C 1 of \triangle ABC under reflection in the line y=-x 3mks*UG*
 (c) Construct the image triangle A 11 B 11 C 11 of \triangle A 1 B 1 C 1 under rotation of +90 0 about
- the origin

 (d) Construct the image triangle $A^{111}P^{111}C^{111}$ of $AA^{11}P^{111}C^{11}$ under orlargement scale.
- (d) Construct the image triangle $A^{111}B^{111}C^{111}$ of $\Delta A^{11}B^{11}C^{11}$ under enlargement scale factor -2 centre (-1,0) 3mks*UG*
- 22. A solid cylinder has a radius of 21cm and a height of 18cm. A conical hole of radius r is drilled in the cylinder on one of the end faces. The conical hole is 12cm deep. If the material removed from the hole is $2^{2}/_{3}\%$ of the volume of the cylinder, find; (Use $\pi = 3.142$)
 - (i) the surface area of the hole.

5mks**UG**

(ii) the radius of a spherical ball made out of the material.

3mks **UG**

(iii) the surface area of the spherical ball.

2mks*UG*

23. A bus left Nairobi at 7.00am and travelled towards Eldoret at an average speed of 80km/hr. At 7.45am a car left Eldoret towards Nairobi at an average speed of 120km/hr. The distance between Nairobi and Eldoret is 300km

Calculate

a) the time the bus arrived at Eldoret 2mks*UG*b) the time of the day the two met. 4mks*UG*c) the distance from Nairobi where the two met. 2mks*UG*d) the distance of the bus from Eldoret when the car arrived at Nairobi. 2mks*UG*

24.(i) The figure below shows a sketch of Mr. Wangamati's Orchard. The bearing and distances of the points on it's boundaries are marked A,B,C,D,E,F,G and H from an external point P and are tabulated.

TURN OVER

Point	Bearing	Distance (m)
A	035^{0}	65m
В	050^{0}	35m
С	080^{0}	115m
D	090^{0}	105m
Е	110^{0}	70m
F	135 ⁰	60m
G	1400	30m
Н	140^{0}	20m

Using a scale of 1cm represents 10m draw an accurate plan of Mr. Wangamati's Orchard. Hence find;

5mks*UG*

- a) the bearing of A from C
- b) the bearing and the distance of C from F.
- ii) A land surveyor recorded the measurement of a small plot in a field work using base lines

AB=75cm, BC=100cm and CA = 100cm as shown below;

R9	В	W5	С	Z17	A
Q7	55	V 6	55	Y 5	70
P15	42	U 7	70	X 6	50
A	30	S 10	60		25
	A		20		C
			В		

Using a scale of 1cm represents 5m draw the map of the field and hence work out it's area in hectares. 5mks*UG*