NAME: \qquad
\qquad

SCHOOL:

\qquad
121 / 1
MATHEMEÃTLEN
PAPER2 ${ }^{1} \partial^{2}$
JULYY ${ }^{〔}$ GUGUST 2007
2 c 准OURS

BOMET DISTRICT MOCK EXAMINATION
 Kenya Certificate Of Secondary Education 2007

121 / 1
MATHEMATICS
PAPER 1
JULY / AUGUST 2007

INSTRUCTIONS TO CANDIDATES

1. Write your name and index number in the spaces provided at the top of this page.
2. This paper consists of two sections: Section I and Section II.
3. Answer all questions in section I and any five questions from Section II.
4. Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
5. Marks may be given for correct working even if the answer is wrong.
6. Non- programmable silent electronic calculators and KNEC Mathematical tables may be used, except where stated otherwise.

For Examiner's Use Only
SECTION I

$\mathbf{1}$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

SECTION II

$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	Total

[^0]
SECTION I (50 Marks)

Answer All the question in this section.

$2^{\sigma_{0} c^{\alpha} 0^{\sigma}}$

$$
\frac{4 \times 6+\frac{1}{25} \div 0.05+\frac{1}{5}}{(-3) \div(-6)+(23)-6 \text { of } 3}
$$

(3mks)
2. Simplify the expression $\frac{2 x^{2}-3 x y-2 y^{2}}{4 x^{2}-y^{2}} \div \frac{2 x+y}{2 x-y}$
(4mks)
3. The price of foodstuff generally increased by 20% at the beginning of a drought season and reduced by 30% during harvesting season. Express the new price as a ratio of the original price in its lower form.
(3mks)
4. Find the integral values of x which satisfy the inequalities: $\begin{aligned} & 15-2 x>4 \\ & 4<3 x-2\end{aligned}$
5. A circle of radius 15 cm divided into ten equal sectors. In each sector, find:
(a) The area $o f$ the triangle
(b) The area of the segment
6. Tap A fills a water tank in 30 min , B in 20 mins and C in 10 mins . All three taps are turned on from 8:55a.m to $8.59 \mathrm{a} . \mathrm{m}$ and then C is turned off. At what time will the tank be filled after C has been closed?
7. The logarithms of the squares of a and b are 1.204 and 0.954 respectively. Find the logarithms of their product.
8. The mean of a set of n numbers is 28 . If an extra number 18 is included in the set, the mean now becomes 26 . Find the value of n
9. In the figure below, $\angle \mathrm{EFG}=\angle \mathrm{EFH}=90^{\circ} \mathrm{HF}=5 \mathrm{~cm}$, and $\mathrm{EF}=12 \mathrm{~cm}$. calculate the lengths HG and $F G$.
10. The line $y=m x+6$ makes an angle of $75^{\circ} 58$ with $x-$ axis. Find the coordinates of the point where the line cuts the x -axis.
11. Find the equation of the image of the line $y=3 x+5$ under reflection in the line $x=y$. (3mks)
12. Given that $\log y=3.143$ and $\log x=2.421$, evaluate: $4 \log y^{1 / 2}+\log \sqrt[3]{x}$

13. (i) Express 98 and 72 as products of their prime factors.
(ii) A rectangle of side 98 cm by 72 cm is divided into squares each of side xcm . Find the greatest value of x .
(2mks)
14. The co-ordinates of points A, B and C are $(0,-4),(2,-1)$ and $(4,2)$ respectively. Use vectors to show that the points A, B and C are collinear.
15. If $2^{x+y}=16$ and $4^{2 x-5}=\frac{1}{4}$, find the ratio $\mathrm{y}-\mathrm{x}: 2 \mathrm{y}$
16. Determine the lower quartile, upper quartile and the quartile deviation for the following set of numbers. $5,10,6,5,8,7,3,2,7,8,9$.

SECTION II (50 MARKS)

Answer any FIVE Ouestions from this section

17. The following afe masses of 25 students in form 4 class.

49, 51, 50,

$4 \hat{4}^{4}, 42^{2}, 59,50,62$
, $46,43,57,56,52$
信 $43,41,40,54,44$
Draw a frequency distribution table with the lower class $40-43$
(4mks)
(b) Estimate the median mass
(3mks)
(c) Draw a histogram for the data.

GRAPH

18. In the figure below O is frie centre and PS is a diameter of the circle. QR is parallel to PS. If angle PSQ is 25° and ${ }^{\varsigma}$ angle POT is 120°, find the sizes of the given angles giving reasons.

(a) Angle QRT
(b) Angle QPT
(c) Angle PQR
(d) Angle PTR
19. A bus left Nairobi at 7.0日a.m and travelled towards Eldoret at an average speed of $80 \mathrm{Km} / \mathrm{hr}$. At 7.45a.m a car left Eldorret towards Nairobi at an average speed of $120 \mathrm{Km} / \mathrm{hr}$. the distance between Nairobs, ând Eldoret is 300 km . Calculate:

(a) The timethe bus arrived at Eldoret.
(b) The time of the day, the two vehicles met.
(c) The distance from Nairobi where the two vehicles met.
(d) The distance of the bus from Eldoret when the car arrived at Nairobi.
20. A three digit number is sach that the sum of its hundreds and tens digits is 10 . When the number is divided by its hundreds digit, the quotient is 108 . If the number is divided by the sum of all the digits, the quotient $\$^{2} 36$. Find the number
21. The figure below represefts the cross-section of a tunnel. The cross-section is in the form of a major segment of a ed \boldsymbol{c}^{5} cle. M is the mid-point of $A B$ and $C M$ is perpendicular to $A B$. Given that $\mathrm{AB}=\mathrm{CM}=8 \mathrm{cra}$, Calculate the volume of the tunnel if it is 15 cm long.

22. In the figure below C is point on AB such that $B A=3 B C$ and D is the mid-point of OA . OC and BD intersect $a+0 x^{f^{5}}$ Given that $O A=a$ and $O B=b$

(a) Write down in terms of a and b the vectors.
(i) $A B$ (1mk)
(ii) $O C$
(iii) $B D$
(b) If $B X=\mathrm{h} . B D$, express $O X$ in terms of a, b and h
(c) If $O X=\mathrm{k} O C$, find h and k
(d) Hence express $O X$ in terms of a and b only.
23. (a) Complete the table berow, giving your values correct to 2 decimal places.

x^{0}	0	d^{5}	30	45	60	75	90	105	120	135	150	165	180
$\operatorname{Cos} 2 \mathrm{x}$	1.8		0.5	0		-0.87	-1.0		-0.5		0.5	0.87	0
$\operatorname{Cos}(2 x+30)$		0.5	0	-0.5		-1.0		-0.5	0		0.87	1.0	0.87

(b) Usingthe frid provided, on the same axes draw the graphs of $y=\operatorname{Cos} 2 x$ and $y=\operatorname{Cos}\left(2 x+30^{\circ}\right)$

Use the scale 1 cm for 15^{0} on the x - axis, 5 cm for 1 unit on y -axis.
(5 mks)

graph

(c) State the amplitude of each graph.
(1mk)
(d) Use your graph to determine:
(i) The solution to the equation: $\operatorname{Cos}(2 x+30)-\operatorname{Cos} 2 x=0$.
(ii) The transformation that would map the graph of $\mathrm{y}=\operatorname{Cos} 2 \mathrm{x}$ onto the graph of

$$
\begin{equation*}
y=\operatorname{Cos}(2 x+30) \tag{1mk}
\end{equation*}
$$

24. (a) Three villages A, B agod C are such that B is 3 km on a bearing of 030° from A, C is 4 km on a bearing of $120^{\circ} \mathrm{fr}^{5}{ }^{5} \mathrm{~m}$.
(i) Using scale of 1 cm to represent 0.5 km , draw a diagram to show the relative pasiffions of the village A, B and C.
(ii) Find the distance and bearing of village A from C .
(2mks)
(iii) A straight main road runs from village A to C. Find the length of the shortest path from village B to the main road.
(b) The measurerfients (in metres) of a field were given in a field note book as follows:

(i) Make a sketch of the field
(ii) Find the area of the field in hectares.

[^0]: This paper consists of 16 printed pages. Candidates should check the question paper to ensure that all the pages are printed as indicated and no questions are missing.

