Name. \qquad
\qquad
School \qquad

121/1
MATHEMATICS ${ }^{\circ}$

PAPER 1

JULY / AUGUST

$21 / 2$ HONRS

BUTERE-MUMIAS DISTRICT MOCK EXAMINATION-2007
 Kenya Certificate of Secondary Education (K.C.S.E)

121/1
 MATHEMATICS
 PAPER 1
 JULY / AUGUST
 $21 / 2$ HOURS

INSTRUCTIONS TO CANDIDATES

1. Write your NAME and INDEX NUMBER in the spaces provided at the top of this page
2. Answer all questions in section I and any five questions in section II.
3. Show all the steps in your calculations giving your answer at each stage in the spaces below each question
4. Marks may be given for correct working even if the answer is wrong.
5. Non-programmable silent electronic calculators and KNEC Mathematical tables may be used.

Section I FOR EXAMINER'S USE ONLY

Question	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	TOTAL
Marks																	

Section II

Question	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	TOTAL
Marks									

Grand Total

This paper consists of 16 printed pages.
Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing

SECTION 1 (50 MARKS)

Answer afl the questions in the spaces provided after each.

1. Evaluate

$$
e^{0^{2}} \cdot \frac{0^{x} / 3(1-2 / 5+1 / 4)}{7 / 30+1 / 3 \text { of } 3 / 5}
$$

2. a) A farmer has 3 containers of capacity 48,36 and 27 litres. Find the capacity of the smallest container that can be filled by each one of them in an exact number of times. (2mks)
b) Find the largest capacity of the container which can be filled by each one of them in an exact number of times.
3. Simplify

$$
\frac{5(x-2 y)-2(x-8 y)}{x^{2}-4 y^{2}}
$$

4. The figure below represents a wheel of diameter 28 cm given $\angle \mathrm{ACB}=120^{\circ}$. Find the length of the major arc O is çentre.
5. The shaded area represents Mumias Municipality region to $1: 50,000$. Estimate the area in hectares.
(3mks)

6. An agent sells goods for a company and gets 10% commission on the first $£ 1000$ selling of the goods and 20% on the remainder. In one week he earned ksh. 4000 as commission. What was the worth of the goods he sold.
7. In the figure below, find ange marked by a and b.

8. Construct a line AC such that $\angle \mathrm{BAC}=30^{\circ}$ and use AC to divide AB into six equal parts.

9. Use reciprocal and cuberoot tables to evaluate

$$
\frac{1}{0.0375}-\sqrt[3]{\frac{1}{37.5}}
$$

10. Find the value of x in the following equation.

$$
\begin{equation*}
25^{x-1} x^{5}+5^{2 x}=130 \tag{4mks}
\end{equation*}
$$

11. Two perpendicular lines intersect at $(3,5)$. If one of the lines passes through $(2,3)$, find the equation of the other line in the form $a x+b y=c$.
12. The image of the point $\mathrm{A}(4,-7)$ under the enlargement of scale factor -2 is $\mathrm{A}^{1}(1,2)$. Determine the cordinate of the centre of enlargement.
13. The number of people who attended an agricultural show in one day was 510 men, 1080 women and some chaildren. When the information is represented on the pie chart the combined angle for men and children was 216°. Find the angle representing the children. (4 mks)
14. A car traveling at $90 \mathrm{~km} / \mathrm{hr}$ starts off at 11:15a.m due east and overtakes a truck traveling at $65 \mathrm{~km} / \mathrm{hr}$ due east at 11:27a.m. How far apart were the vehicles at 11:15a.m, if they both started traveling at the same time.
15. Given that $\mathbf{a}=\binom{3}{1}, \mathbf{b}=\binom{-2}{7}$. Evaluate $\left|\frac{1}{2} \mathbf{a}+2 \mathbf{b}\right|$

16. Find the distance betweeñ points A and B on the surface of the solid drawn below. Correct to 3d.p

SECTION II (50 MARKS)

Answer afl the questions in the spaces provided after each.

17. On the upper pait of line RQ construct locus of points
a) T_{1} suche that angle $\mathrm{RTQ}=45^{\circ}$
b) $\mathrm{M}_{0} \mathrm{O} \mathrm{RQ}$ which is equidistant from R and Q .
c. 3 S which is equidistant from R and Q and lies on T .
(d) Calculate area bounded by loci T_{1} and line RQ.
18. In the figure below NOR

$$
\angle \mathrm{MRN}=50^{\circ} \angle \mathrm{QP}, \mathrm{R}, 5=35^{\circ} .
$$

Calculate giving reasons
a) angle PQR
b) angle QSR
c) obtuse angle POR
d) angle MQR
e) angle QPN
19. The probabilities of Mary, Esther and John coming to school late on Monday are $1 / 4,2 / 5$ and $1 / 3$ respectively.
a) Draw a tree dfagram to represent the information.
b) Calculate the probability that
(i) All the three girls are late
(ii) All except Esther are late
(iii) At least one is late
(iv) At most two girls are late.
20. a) Solve the inequality and write your answer as a single statement and represent on a number line

b) Write the inequalities satisfying the region below.
(5mks)

c) Find the area of the required region.
21. The diagram below a frustrum of a right pyramid of rectangular base ABCD measuring
 which is pazallel to ABCD and exactly two thirds way up the vertical height of the original pyramid. ${ }_{0}, \stackrel{F}{\mathrm{~F}} \mathrm{GH}$ is a rectangle measuring 8 cm by 6 cm .

The slant height of the original pyramid is 36 cm . Calculate
a) Vertical height of the original pyramid to 1 decimal place.
b) The volume of the frustrum to the nearest whole number.
(4mks)
c) The surface area of the original pyramid to the nearest whole number.
(3mks)
22. Find the area of the pentagon ABCDE in which $\mathrm{AE}=5.5 \mathrm{~cm}, \angle \mathrm{~A}=70^{\circ}$ and BE is parallel to CD as shown belowa $\cdot \frac{e^{\prime}}{\mathrm{CD}}=\mathrm{DE}=\mathrm{AB}$.
23. Three towns X, Y ard Z are such that X is on bearing of 120° and 20 km from Y. Town Z is on a bearing of $220 e^{0} e^{e^{2}}$ and 12 cm from X
a) Using a suitable scale draw the position of x, y and z.
b) Find $:=0$
(i) करुe cistance between Y and Z in km

R init The bearing of x from z.
(iii) The bearing of z from y
(iv) The area of the figure bounded by XYZ.
24. Two equal circles with centres O and Q and radius 8 cm intersect at point A and B as shown below.

Given that the distances between O and Q is 12 cm and that line $A B$ meets $O Q$ at X.
Find:-
a) the length of the chord AB .
b) the area of the shaded region.
c) the reflex angle AOB.

