For More	Free KCSE Revision Past Papers and Answers	Visit http://www.joshuaarimi.com
	Name	Index No
	School	
	231/1	
	BIOLOGY (THEORY)	
	PAPER 1 JULY / AUG. 2007	
	2 HRS	

BUTERE-MUMIAS DISTRICT MOCK EXAMINATION-2007

Kenya Certificate of Secondary Education (K.C.S.E)

231/1 BIOLOGY (THEORY) PAPER 1 JULY / AUG. 2007 2 HRS

INSTRUCTIONS TO CANDIDATES

- Write your name and Index number in the spaces provided.
- Answer ALL the questions in the spaces provided.

For Examiner's Use Only.

Question	Maximum Score	Candidate's score
1 – 27	80	

This paper consists of 12 printed pages.

Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing

© Butere-Mumias District Examination Committee - 2007

Biology 231/1

TURN OVER

			(2mks
		be taken to reduce the spread of HIV	
		occur inside the blood vessels.	
Why is wilting imp	portant to plants on	a hot sunny afternoon.	(2m
• • • • • • • • • • • • • • • • • • • •			
The equation belo	ow represents a mo	etabolic process that occurs in a mam	
		etabolic process that occurs in a mam Organic + Urea	
The equation below	ow represents a mo	etabolic process that occurs in a mam	malian liver.
The equation below Amino acids a) Name the pro-	ow represents a mo	Organic + Urea compounds	malian liver.
The equation below Amino acids a) Name the pro-	ow represents a mo	Organic + Urea compounds by the equation above	malian liver.
The equation below Amino acids a) Name the pro-	ow represents a mo	Organic + Urea compounds by the equation above process in mammals?	malian liver.
The equation below Amino acids a) Name the probability of the interest of the	ow represents a mo	Organic + Urea compounds by the equation above process in mammals?	(1 i

5. The diagram below represents an organism that commonly grows on damp rotting matter.

	a)Identify the part labeled A	(1mk)
	b) Give two functions of the part labelled B.	(2mks)
6	Explain why plants growing in low attitude areas grow faster than those in high	attitudes
		(2mks)

7 A student set up an experiment as shown in the figure below.

The set-up was left at room temperature for six days.

	a) To what group of fruits does the specimen drawn above belong?	(1mk)
	b) With a reason name the agent of dispersal.	(2mks)
	A certain plant was found to have 22 chromosomes in it's calyx cells. State the nu	ımber of
	chromosomes present in the plants.	
	a) Ovule	
	b) Endosperm	(2mks
	Name the organelles that performs the following functions.	
a)	Name the organelles that performs the following functions. synthesis of RNA.	
a)		
	synthesis of RNA.	
	synthesis of RNA.	
	synthesis of RNA.	
b)	synthesis of RNA. Formation of spindle fibres.	

13. Below is a diagrammatic representation of varies processes in animals.

		Sucrose + water	1		
i)	Name substance	P			(1mk)
	Nama pragas			 	
ii	Name proces X	ses			
	Y			 	
				 	(2mks)
ii	i) Name the enzyn	ne involved in process	Χ.		(1 mk)
		cm that causes:			
17.	Name the organi a) malaria	siii mat causes,			
	b) cholera.				
 a)	State the origin o			 	(1mk)
••				 	

© Butere-Mumias District Examination Committee - 2007

15.

Biology 231/1

TURN OVER

		(2 mks)
Hormone		
Role		
xplain four ways in which the	e skin is adapted to it's protective functions.	(4mks)
) Distinguish between respirat	ition and gaseous exchange.	(2mks)
) TDI		1 1
	at is represented by the chemical equation show	vn below.
	\rightarrow 57 C O ₂ + 5 H ₂ O + Energy.	(21)
Calculate the respiratory quo	otient (RQ) of the fat molecule above.	(2mks)
	note growth and maturation during	•••••
n) Moulting in insects	oo grown and maturation during	
		• • • • • • • • • • • • • • • • • • • •

TURN OVER

© Butere-Mumias District Examination Committee - 2007 Biology 231/1

	b) Metamorphosis in frog tadpoles.	(2mks)
19.	a) Name the type of joint that articulates the pelvic girdle and femur.	(1mk)
	b) state the importance of the joint named in (a) above	(1 mk)
	c) Name the structure that attaches muscles to bones.	(1mk)
20.	a) state two adaptations of a RBC to it's function.	(2mks)
	b) Name two ways in which carbon (iv) oxide is transported in a human's blo	ood. (2mks)
21.	a) Differentiate between the following terms.i) Plasmolysis	
	ii) Haemolysis.	(2mks)
	b) state one role of osmosis in living organisms	(1mk)

22.	a) Define placentation.	(1mk)
	b) Name the type of placentation shown in the diagram below.	(1mk)
	Ovule	
23.	Distinguish between	
	Ecology and ecosystem.	(2mks)
b)	Habitat and niche.	(2mks)
24.	a) List two differences between simple and conditioned reflex actions.	(2mks)
		• • • • • • • • • • • • • • • • • • • •
	b) Give one example of a simple reflex action.	(1mk)

25. The following is a human pedigree showing the transmission of haemophilia. Study the diagram and answer the questions that follow. Let H represents normal conditions and h allele for haemophilia.

26. The diagram below shows a certain plant. Study it and answer the questions that follow...

	a) i) Name the kingdom to which the plant belongs.	(1mks)
	ii) Give one reason for your answer in (a) (i) above.	(1mk)
	b) Name the part labelled A.	(1mk)
27.	Explain comparative embryology as evidence of evolution.	(2mks)