For More	Free KCSE Revision Past Papers and Answers	Visit http://www.joshuaarimi.com
	Name	Index No
	School	
	231/1 BIOLOGY	
	PAPER 1 (THEORY)	
	JULY / AUGUST 2 HOURS	

TRANS-NZOIA DISTRICT MOCK EXAMINATION-2007

Kenya Certificate of Secondary Education (K.C.S.E)

231/1 BIOLOGY PAPER 1 (THEORY) JULY / AUGUST 2 HOURS

Instructions to candidates

• Answer ALL the questions in the spaces provided.

For Examinations use only.

Question	Maximum score	Candidates score
1- 21	80	

This paper consists of 12 printed pages.

Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing

1.	State the functions of the cell sap	(2mks)
2.	A person had his bile duct blocked. Give two physiological problems the person	will get
		2mks)
3.	What do you use in collecting insects in crevices.	(1mk)
4.	Differentiate between fertilization in animals and double fertilization in plants.	(3mks)
5.	A scientist came across an animal which lays eggs and has fur and external ears.	To what class
	was this animal placed?	(1mk)
	Class	
6.	Differentiate between divergent and convergent evolution	(2mks)
7.	State two structural differences between a sensory neurone and a motor neurone.	(2mks)
8.	In Drosophila the gene for wing length is sex-linked. The allele for normal wings	s is dominant
	over the short wings. A short winged male fly was crossed with a homozygous n	ormal winged

© Trans-Nzoia District Examination Committee - 2007

Biology 232/1

TURN OVER

`	•			d not hatch.	1 .	.: 0.1	D 01: 1:	1 * . 1 .1
1)	_			d then state	what propor	tion of the	F ₁ flies exhi	
		phenotype your work						(3mks)
	b)From th	ne descripti	ons given;					
	ŕ	-	_	the appeara	nce of wing	gless flies.		(1mk)
	ii) State ty	wo general	effects of t	ne process n	amed in bu			
	ii) State tv	wo general	effects of t	ne process n	amed in b(1			
	ii) State tv	wo general	effects of t	ne process n	amed in b(1			(2mks)
							quantity of b	
	A student	set up thre	e thermos f	flask s, x, y,	z containin	g an equal	quantity of b	peans. Mois
	A student	set up thre	e thermos f	flask s, x, y,	z containin	g an equal	-	peans. Mois
	A student germination soaked in	set up thre	e thermos for the placed were placed	flask s, x, y, in flasks x;	z containing	g an equal	-	peans. Mois
	A student germination soaked in Thermom	set up thre ng beans w antiseptic eters were	re thermos for the placed were placed dipped into	flask s, x, y, in flasks x;	z containing boiled bean	g an equal	ced in Y and n placed ups s in °c.	beans. Mois boiled bear
	A student germination soaked in Thermom	set up thre ng beans w antiseptic eters were	re thermos for the placed were placed dipped into	flask s, x, y, in flasks x; d in flask Z.	z containing boiled bean	g an equal	ced in Y and	peans. Mois
	A student germination soaked in Thermom	set up thre ng beans w antiseptic eters were stands. The	re thermos for the placed were placed dipped into the table belo	flask s, x, y, in flasks x; d in flask Z. the beans a w shows the	z containing boiled bean nd the flask	g an equal as were places were therefore readings	ced in Y and n placed ups s in °c.	beans. Mois boiled bear
	A student germination soaked in Thermom means of	set up threing beans wantiseptic eters were stands. The	re thermos for the placed dipped into the table belo and day	flask s, x, y, in flasks x; d in flask Z. the beans a w shows the	z containing boiled bean nd the flask thermomet	g an equal as were places were therefore readings	n placed ups in °c.	peans. Mois boiled bear ide down by
-	A student germination soaked in Thermomeans of	set up threeng beans wantiseptic eters were stands. The 1st day 20	the thermos for the placed dipped into the table belo 2nd day 21	flask s, x, y, in flasks x; d in flask Z. the beans a w shows the	z containing boiled bean nd the flask thermomet 4th day 24	g an equal as were places were there readings 5 th day 25	n placed ups s in °c. 6th day 25	peans. Mois boiled bear down by 7th day 25

b) Explain why there is no significant heat production in Z after day 5?	(1mk)
c) What is the significance of flask Z?	(1mk)
d) Account for the readings in flask Y.	(2mks)
e) Why were vacuum flasks used instead of glass flasks	(1mk)
f) What was the reason for boiling the seeds?	(1mk)
g) Name two by- products that are likely to be produced in flask X	(2mks)
h) How would you test for the two by-products formed in X	(2mks)
The diagram below shows the structure of the spinal cord.	

© Trans-Nzoia District Examination Committee - 2007

10.

Biology 232/1

TURN OVER

	a) Label the parts H,J K and L.		(2mks)
	b) Identify the role of structure M	 [(1mk)
	c) State the function of the structu		(1mk)
	d) State three differences between	n simple reflex action and condit	ioned reflex action. (3mks)
11.	What would be wrong with a pers i) Contained glucose	on whose urine.	(1mk)
	ii) Contained large amounts of pro		(1mk)
	iii) Had high PH		(1mk)
12.	The total masses of some organism	ms in a food chain are shown in o	diagrams A and B below.
	A Total mass of owls	Total mass of mice	Total mass of nuts/seeds

Tips on passing KCSE subscribe freely @ http://www.joshuaarimi.com Connect with Joshua Arimi on facebook.

© Trans-Nzoia District Examination Committee - 2007

Biology 232/1

TURN OVER

b) Why does the rise of KCl content stop when potassium cyanide is added.

				(2
The follow	ing table shows the	quantities in gra	ams of food substances in f	our different k
foods.				
	Protein	Fat	Carbohydrate.	
Food A	100	50	600	
Food B	150	50	500	
Food C	50	100	600	
Food D	150	50	500	
a) Given th	at 1g of fat supplie te or protein which		kilojoules of energy than the	
a) Given th			duce most energy.	(1ml
a) Given th				(1mk
a) Given th			duce most energy.	(1mk
a) Given th carbohydra	te or protein which	food would pro	duce most energy.	(1mk
a) Given th carbohydra	te or protein which	food would pro	duce most energy.	(1mk
a) Given th carbohydrab) i) State l	te or protein which	food would pro	duce most energy.	(1mk
a) Given th carbohydrab) i) State l	te or protein which	food would pro	duce most energy.	(1mk
a) Given th carbohydrab) i) State l	te or protein which	food would pro	duce most energy.	(1mk
a) Given th carbohydra b) i) State h	now any two factors	food would pro	duce most energy.	(2mk
a) Given th carbohydrab) i) State l	now any two factors	food would pro	duce most energy.	(1mk
a) Given th carbohydra b) i) State h	now any two factors	food would pro	duce most energy.	(2mk
a) Given th carbohydra b) i) State h	now any two factors	food would pro	duce most energy.	(2mk

ii) How they determine	(2mk
After four months of pregnancy the ovaries of a woman can be reme	oved without termina
pregnancy. However during the first four months of pregnancy the	ovaries must remain i
if pregnancy is to be maintained.	
Explain these results	(2m)
Figure A represents a stage in the development of a toad. Study it can	arefully and answer th
following questions.	
a) What two visible features adapt it for life in water	(2mk

c) Name three changes in Fig B of the same animal at the next stage of development	nent.
	(3mks)
Fig. B	
d) What is the significance of each change in (c) above to the life of the animal.	(3mks)
a) What are vestigial structures?	(2mks)

19.	List three characteristics that would place man in the class mammalia.	(3mks)
		• • • • • • • • • • • • • • • • • • • •
20.	Chloroquin has been used for many years since its discovery, for the tre	eatment of malaria, but
	it is no longer effective. Suggest why it is no longer effective.	(2mks)
		• • • • • • • • • • • • • • • • • • • •
21.	What is a neurone, as used in sensitivity?	(1mk)
21.		
21.		
21.		
21.		
21.		