NAME: NO:	INDEX
SCHOOL:	
SCHOOL:	
CANDIDATE	'S SIGNATURE
	DATE:
231/1	

231/1 BIOLOGY PAPER 1 THEORY JULY / AUGUST 2008 2 HOURS

BOMET DISTRICT MOCK EXAMINATION Kenya Certificate Of Secondary Education 2008

231 / 1 BIOLOGY PAPER 1

INSTRUCTIONS TO CANDIDATES

❖ Answer ALL questions in this paper in the spaces provided.

For Examiner's Use Only

Questions	Maximum Score	Candidate's Score
1-30	80	

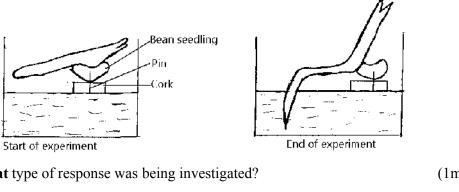
This paper consists of 8 printed pages. Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing.

1.	(a) Name three characteristics of living organisms	(3mks)

BOMET DISTRICT MOCK © 2008

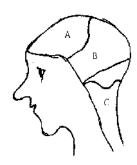
	2	
	(b) Apart from Plantae and Animalia, name three other kingdoms.	(3mks)
2.	Give two characteristics that distinguish scientific names from common n	ames. (2mks)
3.	State two limitations of using a microscope to estimate the size of cells	(2mks)
4.	(a) What is cell specialization	(1mk)
	(b) Name three types of tissues found in animals	(3mks)
5.	Distinguish between osmosis and active transport.	(2mks)
OMET.	DISTRICT MOCK © 2008	231/1

	3	
6.	Describe what happens during the dark stage of photosynthesis	(3mks)
7.	The diagram below shows dentition of a dog	
, .	X .	
	(a) (i) Name the part labeled X	(1mk)
	(ii) Give a reason for your answer in a (i) above	(1mk)
		• • • • • • • • • • • • • • • • • • • •
	(b) State how part labeled Y is adapted to its function.	(1mk)
8.	•	energy.
	(1mk)	
9	State two functions of chloride ions in the human body.	(2mks)
٠.	The same of the same same in the indicate to the same same same same same same same sam	(=)


5	
13. Name two sites where gaseous exchange takes place in higher plants	(2mks)
14. State four adaptations of respiratory surfaces	(4mks
15. Give the formula for calculating the respiratory quotient (RQ).	(1mk)
16. State the economic importance of the following plant excretory products (a) Caffeine	
(2mks)	
(b) Quinine.	
(1mk)	
17. Explain why a baby loses more heat per unit weight than an adult when explain when a substitution of the substitution of	
	nks)
ET DISTRICT MOCK © 2008	231/1

18. During a field trip, plant that had flowers drew the attention of a student	
(a) Name the division of the plant	(1mk)
(b) Suggest three possible characteristics one would notice to conclude the	_
by insects. (3mk	s)
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
19. State two roles of green plants in a fish aquarium other than providing food	1 for the fish
19. State two foles of green plants in a fish aquairant other than providing root	(2mks)
20. Bivalent, synapsis, crossing over are terminologies used in cell division.	
	(1mk)
20. Bivalent, synapsis, crossing over are terminologies used in cell division. (a) Name the stage of meiosis in which the above process occur.	(1mk)
20. Bivalent, synapsis, crossing over are terminologies used in cell division. (a) Name the stage of meiosis in which the above process occur.	
20. Bivalent, synapsis, crossing over are terminologies used in cell division. (a) Name the stage of meiosis in which the above process occur.	(2mks)
20. Bivalent, synapsis, crossing over are terminologies used in cell division. (a) Name the stage of meiosis in which the above process occur. (b) Distinguish between synapsis and crossing over.	(2mks)
20. Bivalent, synapsis, crossing over are terminologies used in cell division. (a) Name the stage of meiosis in which the above process occur. (b) Distinguish between synapsis and crossing over.	(2mks)
20. Bivalent, synapsis, crossing over are terminologies used in cell division. (a) Name the stage of meiosis in which the above process occur. (b) Distinguish between synapsis and crossing over.	(2mks)
20. Bivalent, synapsis, crossing over are terminologies used in cell division. (a) Name the stage of meiosis in which the above process occur. (b) Distinguish between synapsis and crossing over.	(2mks)
20. Bivalent, synapsis, crossing over are terminologies used in cell division. (a) Name the stage of meiosis in which the above process occur. (b) Distinguish between synapsis and crossing over.	(2mks)
20. Bivalent, synapsis, crossing over are terminologies used in cell division. (a) Name the stage of meiosis in which the above process occur. (b) Distinguish between synapsis and crossing over.	(2mks)
20. Bivalent, synapsis, crossing over are terminologies used in cell division. (a) Name the stage of meiosis in which the above process occur. (b) Distinguish between synapsis and crossing over.	(2mks)
20. Bivalent, synapsis, crossing over are terminologies used in cell division. (a) Name the stage of meiosis in which the above process occur. (b) Distinguish between synapsis and crossing over.	(2mks)

	7	
(iii) Umbilical cord (1mk) 22. Name the parts of the flower that are responsible for production of gametes (2mks) 23. During germination and early growth, the dry weight of endosperm decreases while that of the embryo increases. Explain (2mks) 24. Give two reasons why cross breeding is better than inbreeding (2mks) 25. Identify each of the following aspects of evolution described below. (i) Structures that have become functionless in the course of evolution. (1mk) (ii) A gradual continuous and irreversible change in organisms over long period of time resulting in the formation of new species from pre-existing ones. (1mk)		(1mk)
(iii) Umbilical cord (1mk) 22. Name the parts of the flower that are responsible for production of gametes (2mks) 23. During germination and early growth, the dry weight of endosperm decreases while that of the embryo increases. Explain (2mks) 24. Give two reasons why cross breeding is better than inbreeding (2mks) 25. Identify each of the following aspects of evolution described below. (i) Structures that have become functionless in the course of evolution. (1mk) (ii) A gradual continuous and irreversible change in organisms over long period of time resulting in the formation of new species from pre-existing ones. (1mk)		
22. Name the parts of the flower that are responsible for production of gametes (2mks) 23. During germination and early growth, the dry weight of endosperm decreases while that of the embryo increases. Explain (2mks) 24. Give two reasons why cross breeding is better than inbreeding (2mks) 25. Identify each of the following aspects of evolution described below. (i) Structures that have become functionless in the course of evolution. (1mk) (ii) A gradual continuous and irreversible change in organisms over long period of time resulting in the formation of new species from pre-existing ones. (1mk)	(iii) Umbilical cord	(1mk)
22. Name the parts of the flower that are responsible for production of gametes (2mks) 23. During germination and early growth, the dry weight of endosperm decreases while that of the embryo increases. Explain (2mks) 24. Give two reasons why cross breeding is better than inbreeding (2mks) 25. Identify each of the following aspects of evolution described below. (i) Structures that have become functionless in the course of evolution. (1mk) (ii) A gradual continuous and irreversible change in organisms over long period of time resulting in the formation of new species from pre-existing ones. (1mk)		
23. During germination and early growth, the dry weight of endosperm decreases while that of the embryo increases. Explain (2mks) 24. Give two reasons why cross breeding is better than inbreeding (2mks) 25. Identify each of the following aspects of evolution described below. (i) Structures that have become functionless in the course of evolution. (1mk) (ii) A gradual continuous and irreversible change in organisms over long period of time resulting in the formation of new species from pre-existing ones. (1mk)		s (2mks)
24. Give two reasons why cross breeding is better than inbreeding (2mks) 25. Identify each of the following aspects of evolution described below. (i) Structures that have become functionless in the course of evolution. (1mk) (ii) A gradual continuous and irreversible change in organisms over long period of time resulting in the formation of new species from pre-existing ones. (1mk)		
24. Give two reasons why cross breeding is better than inbreeding (2mks) 25. Identify each of the following aspects of evolution described below. (i) Structures that have become functionless in the course of evolution. (1mk) (ii) A gradual continuous and irreversible change in organisms over long period of time resulting in the formation of new species from pre-existing ones. (1mk)		
25. Identify each of the following aspects of evolution described below. (i) Structures that have become functionless in the course of evolution. (ii) A gradual continuous and irreversible change in organisms over long period of time resulting in the formation of new species from pre-existing ones. (1mk)	24. Give two reasons why cross breeding is better than inbreeding	(2mks)
(i) Structures that have become functionless in the course of evolution. (1mk) (ii) A gradual continuous and irreversible change in organisms over long period of time resulting in the formation of new species from pre-existing ones. (1mk)		
(ii) A gradual continuous and irreversible change in organisms over long period of time resulting in the formation of new species from pre-existing ones. (1mk)	25. Identify each of the following aspects of evolution described below. (i) Structures that have become functionless in the course of evolution.	(1mk)
resulting in the formation of new species from pre-existing ones. (1mk)		
		21/4


(iii) The evolutionary phenomenon in which organs from common ancestral forms became		
adapted to different ecological niche.	(1mk)	

26. An experiment was carried out to investigate a growth response in a bean seedling as illustrated in the diagrams below.

(a) What type of response was being investigated?	(1mk)
b) Explain the response exhibited by the root	(3mks)

27. The diagram below shows surface of a human brain.

9

	(a) Name the parts labelled A and C	(2mks)
	A:	
	C:	
	(b) State what would happen if the part labeled B was damaged	(1mk)
28.	How are xylem vessels adapted for support	(1mk)
29.	State three characteristics of skeletal muscles	(3mks)
30.	Name three types of harmful drugs used in society	(3mks)