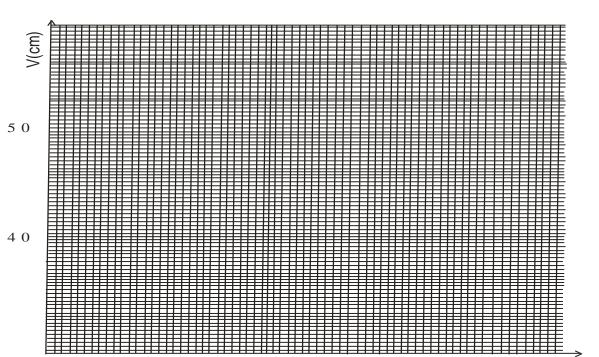

c) Replace lens A with lens B. Fix the plane mirror at the back of lens B. Repeat the procedure in (b) above. Measure the distance for between the screen and lens B.

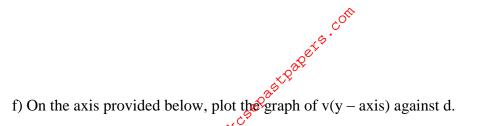
$$\ell_2 = _ cm_{\star}$$

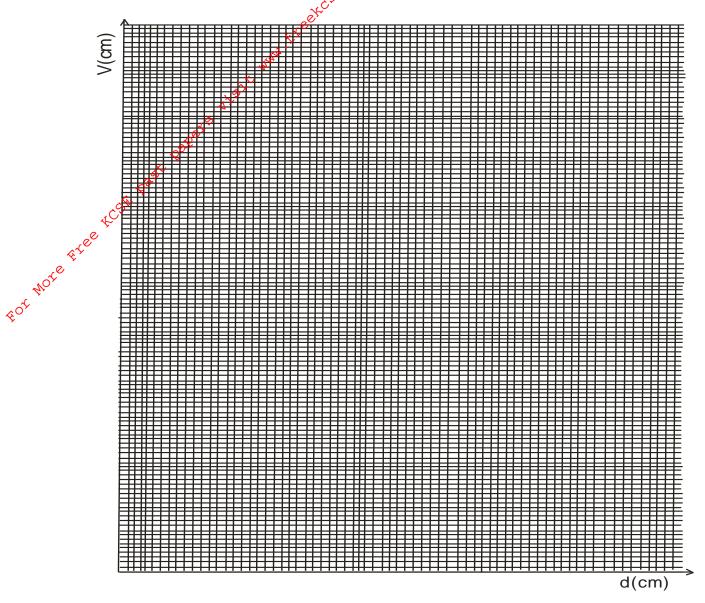
d) Remove the mitror from the lens holder.


al a

Set the distance d between lens A and lens B to be 65cm. Adjust the position of screen II to obtain a sharp image of the cross wires on it. Measure the distance V between lens B and screen II.

Repeat the experiment


D(cm)	65	67	69	71	73	77	80	
V(cm)								
							(7marks)	


f) On the axes provided below, plot the graph of v(y-axis) against d.

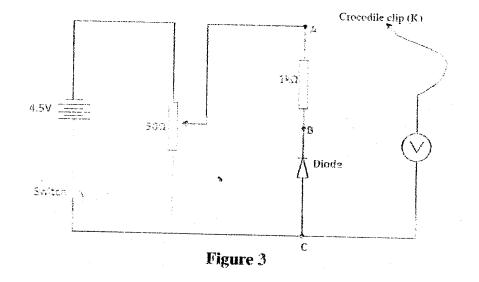
BOOKFLYER PRECISE PUBLISHERS

(3marks)

(3marks)

g) I) From the graph, at d = 70cm. determine;

I. the value of v.


II. the slope S of the graph.

BOOKFLYER PRECISE PUBLISHERS

(1mark)

(3marks)

- astpapers.com Given that $K = \frac{-225}{(d-55)^2}$ ii) determine the value of K (2marks) iii) determine the values of m given that $m = \underline{S}$ (2marks) Κ Question 2 You are provided with the following; A volumeter _ A diode with ends labelled B and C \bigwedge 1k Ω resistor A 50 Ω potentiometer 3 dry cells and a cell holder For More Fre'
 - A switch
 - 8 connecting wires (at least 4 with crocodile clips)
 - Proceed as follows;
 - Set up the circuit as shown in figure 3. a)

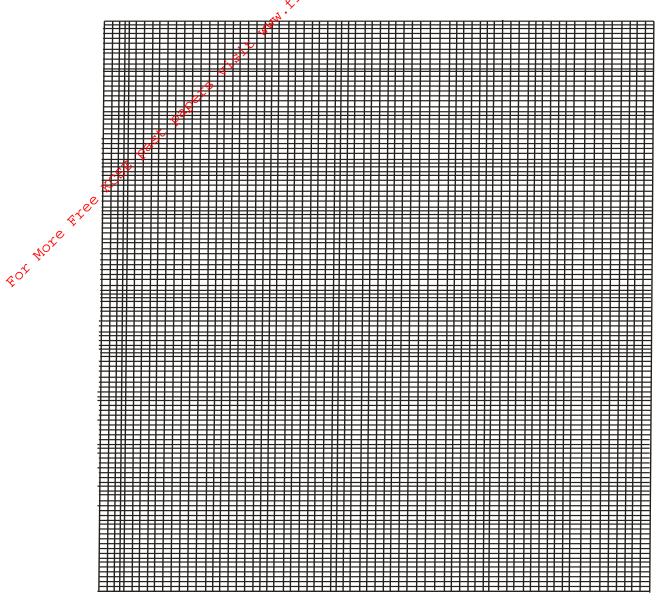
b) i) Connect the crocodile clip K to point A. Adjust the potentiometer by turning the knob until the voltmeter reading is maximum.

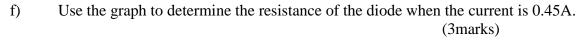
Maximum voltmeter reading = _____ volts. (1mark)

BOOKFLYER PRECISE PUBLISHERS

Without adjusting the potentionmeter, disconnect the crocodile clip K from point A and connect it to point B. record the voltmeter reading.

volts. Voltmeter reading = $_$ (1mark) Explain why the voltmeter reading in b(i) is different from that in b(ii). iii) (2marks) FOR NOTE FLEEC) Disconnect the crocodile clip K from point B and connect it to point A. Adjust the potectiometer so that the voltmeter reading V_A is 1.0V. Disconnect the crocodile clip K from A and connect it to point B. Record the voltmeter reading V_B.


VB = _____volts.


(1mark)

d) By adjusting the potentiometer to obtain other values of V_A (when K is at A) shown in table 2, repeat the procedure in (c) to obtain the corresponding values of V_B (when K is at B) and complete the table.

V _A (V)	V _B (V)	$I = \left(\frac{VA - VB}{1000}\right)(A)$
1.5		
2.0		
2.5		
3.0		
3.5		
4.0		

c) On the grid provided, plot a graph of I (y – axis) against V_B .

