......Adm. No.....

For More Free Acst Pack Pack 233/1

CHEMISTRY

Paper 1

THEORY

July 2013

2 hours

MARANDA MOCK EXAMINATIONS

Kenya Certificate of Secondary Education

Instructions to candidates

- 1. Write your name and index number in the spaces provided above.
- 2. Answer all the questions in the spaces provided in the question paper.
- 3. Mathematical tables and silent electronic calculators may be used.
- 4. All workings MUST be shown where necessary.

For Examiner's Use Only.

Questions	Maximum score	Candidate's score	
1-29	80		

2. For the reaction

Using oxidation numbers determine the reducing agent.

(2mks)

3. When aqueous sodium hydroxide solution was added to freshly prepared acidified iron (II) sulphate solution, a green precipitate was formed. When hydrogen peroxide was first added to iron (II) sulphate solution followed by sodium hydroxide solution, a brown precipitate was formed. Explain these observations. (3mks)

4. Substances X and Y consist of molecules X_2 and Y_2 respectively. When the two elements react, they form a molecule XY. The X-X bonds are as strong as the Y-Y bonds but X-Y bonds are stronger than either X-X or Y-Y. The equation for the reaction for the reaction is.

$$X_{2(g)} + Y_{2(g)} \longrightarrow 2XY_{(g)}$$

(a) Is the reaction exothermic or endothermic? Give a reason for your answer. (2mks)

	St. C.	
	* te	
	man.	
		••
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	••
	(b) Draw an engegy level diagram for the reaction in (a) above. (2mks)	•
	(b) blaw all elleggy level diagram for the reaction in (a) above. (211ks)	
	& Y	8
	A COST	
5.	entane is a saturated hydrocarbon.	
3/5 2/5	What does the term saturated hydrocarbon mean? (1mk	د)
ια,	What does the term satarated hydrocarbon mean.	.1
	F =1	
••••		
/I- \		
(a)	Give the equation for complete combustion of pentane when burnt in plentiful supply of air	•
	(2mks	5)
		2
6	A solution of potassium chloride was added to a solution containing a lot of lead (II) nitrate.	Δ
	cipitate that weighed 5.56g was formed. Find the amount of potassium chloride in the	
sol	ution. (Pb=207, Cl=35.5, K=39) (3mks)
	2	
		-
7. /	Aluminium chloride vapour combines readily with ammonia gas to form a solid compound of	F
for	mula (AICl ₃ .NH ₃). Explain in terms of structure and stability of atoms why this reaction	
oco	curs. (2mks	(;)
		•

polymer it forms.		(2mks)
polymer it forms.		(211183)
CH₂CHCI	, s	
Structure of polymer		annum and a second
Q X		
9 00		
ii * 1		
(b) State one use of the polymer in (a)		(1mk)
	naverna i della di sala	
9. Gas A is 16 times denser than gas B. 100c	m3 of A diffuses through a hole	in 20 seconds.
Calculate the volume of B that will diffuse th	nrough the hole in 30 seconds.	(3mks)
····		
10 Heathafallowing information to accura	s the guestions that fallow	
10. Use the following information to answer	r the questions that follow.	
$Sn^{2+}_{(aq)} + 2e- \longrightarrow Sn_{(s)} E^{Q} = -0.14V$	10	
$Cu^{2+}(1+2e_{1})$ Cu_{1} $E^{Q}=0.34V$		
$Cu^{2+}(_{aq}) + 2e^{-} \longrightarrow Cu_{(s)} E^{Q} = 0.34V.$	a)	
Cu^{2+} (aq) $+2e^{-} \longrightarrow Cu_{(s)}$ $E^{Q}=0.34V$.	cell made up of two half cells.	(1mk)
	cell made up of two half cells.	(1mk)
(a) Write the cell representation for the		(1mk) (1mk)
(a) Write the cell representation for the	on.	(1mk)
(a) Write the cell representation for the		(1mk)
(a) Write the cell representation for the (b) Write an equation for the cell reaction (c) Calculate the E ^Q value for the cell.	on.	
(a) Write the cell representation for the (b) Write an equation for the cell reaction (c) Calculate the E ^Q value for the cell.	on.	(1mk)

excsepastpagets.co

13. A solid mixture consists of substances Y, Y, and Z whose solubilities at room temperature are shown in the table below.

Substan	ce es Solub	Solubility (g/100g water)			
×,	At 25°C	At 60°C			
(200	0.02	0.02			
(S)	63	82			
ขั้	48	64			

	E.C.			
		1990 1990 1990		
12				
4. When a hydrated sample of o		hate CaSO	₄ .XH ₂ O was hea	ited until all the water
as lost, the following data was	recorded.			
lass of crucible	= 30.296g			
1	22 111 -			
ass of crucible + hydrated salt	= 33.111g			
15002		÷		
lass of crucible + hydrated salt	t = 32.781g		11 ²	26 11 0 40
agent country of	t = 32.781g	ated salt (RAM: CaSO ₄ = 1	36, H₂O= 18) (3m
lass of crucible + anhydrous sal	t = 32.781g a of the hydra	6	RAM: CaSO ₄ = 1	
lass of crucible + anhydrous sal	t = 32.781g a of the hydra	6		
ass of crucible + anhydrous sal	t = 32.781g a of the hydra		£	
ass of crucible + anhydrous sal	t = 32.781g a of the hydra	: 	§	
ass of crucible + anhydrous sal	t = 32.781g a of the hydra	: 	§	
lass of crucible + anhydrous sal	t = 32.781g a of the hydra	* 2	1	
lass of crucible + anhydrous saletermine the empirical formula	t = 32.781g a of the hydra	* 2	1	Vrite equations for the
ass of crucible + anhydrous sale etermine the empirical formula 5. Zinc reacts with both concen yo reactions.	t = 32.781g a of the hydra trated and d	ilute sulph	uric (VI) acid. V	Vrite equations for the
ass of crucible + anhydrous sale etermine the empirical formula 5. Zinc reacts with both concen	t = 32.781g a of the hydra trated and d	ilute sulph	uric (VI) acid. V	Vrite equations for the

16. Starting with copper metal, describe how a sample of copper (II) chloride may be prepared in the laboratory. 4 (3mks) ${\mathfrak R}$ 7. The atomic number of sulphur is 16. Write the electron arrangement of sulphur on the following. (2mks) (a) H₂S..... (b) SO²⁻3..... 18. Using dots (.) and crosses (X) show bonding in: (a) The compound formed between phosphorus and hydrogen. (P=15, H= 1) (1mk) (b) carbon(II)oxide.(C=6, O=8) (1mk) 19. Hydrogen and oxygen can be obtained by electrolysis of acidified water. Using equation for the reaction at the electrodes, explain why the volume of hydrogen obtained is twice that of (2mks)

20. The energy level diagram below shows the effect of catalyst on the reaction path.

a) What does point P represent?	(1mk)

- (b) With reference to the energy level diagram, explain how a catalyst increases the rate of a reaction.

 (2mks)
- 21. (a) What is meant by a strong acid? (1mk)

(b)In an experiment 40cm³ of 0.5M sulphuric acid was reacted with excess sodium carbonate and the volume of carbon (IV) oxide produced recorded with time. In another experiment, the same volume and concentration of ethanedioic acid was also reacted with excess sodium carbonate and the volume of carbon (IV) oxide produced recorded with time. On the grid below, sketch and label the curves if the volumes of carbon (IV) oxide were plotted against time.

Maranda Mock Examination Chemistry Paper 1 2013

22. (a) State Gay Lussac's law.	(1mk)
(b) 10cm ³ of a gaseous hydrocarbon, CxHy required 30cm ³ of oxygen for complete com	
in steam and 20th 5 of carbon (iv) oxide were produced, white is the value of xi	
23. (a) Explain why permanent hardness in water cannot be removed by boiling.	(2mks)
(b) Name two methods that can be used to remove permanent hardness from water.	

Page 9

	٠ ۵.			
	with freet			
	ږُخ		••••••••••••••••••••••••	
	3,5			
(a) Disti	guish be tween nuclear fissior	erroren an la decembra de la companya de la company		
a) Disting	guish petween nuclear fission	and nuclear	tusion.	(2n
	. 			
Ç.				
C S				
£C				
Describe	how solid wastes containing	radioactive su	ubstances shou	ıld be disposed of.
				(2)
				(2n
	······			
<u> </u>	information below and answ			<i>1</i> .
lons Na	Electronic arrangement 2.8	Ionic radius		<i>1</i> .
lons	Electronic arrangement	Ionic radius 0.095		<i>1</i> .
lons Na ⁺	Electronic arrangement 2.8	Ionic radius		1.
lons Na ⁺ K ⁺	Electronic arrangement 2.8 2.8.8	Ionic radius 0.095 0.133		1.
lons Na [†] K [†] Mg ^{2†}	Electronic arrangement 2.8 2.8.8 2.8	Ionic radius 0.095 0.133		<i>1.</i>
lons Na [†] K [†] Mg ^{2†}	Electronic arrangement 2.8 2.8.8	Ionic radius 0.095 0.133		1.
lons Na ⁺ K ⁺ Mg ²⁺	Electronic arrangement 2.8 2.8.8 2.8 pnic radius of:	Ionic radius 0.095 0.133		
lons Na ⁺ K ⁺ Mg ²⁺	Electronic arrangement 2.8 2.8.8 2.8	Ionic radius 0.095 0.133		
lons Na ⁺ K ⁺ Mg ²⁺	Electronic arrangement 2.8 2.8.8 2.8 pnic radius of:	Ionic radius 0.095 0.133		
lons Na ⁺ K ⁺ Mg ²⁺	Electronic arrangement 2.8 2.8.8 2.8 pnic radius of:	Ionic radius 0.095 0.133		/. (1r
Ions Na ⁺ K ⁺ Mg ²⁺ ain why ic	Electronic arrangement 2.8 2.8.8 2.8 poinc radius of: reater than that of Na ⁺	Ionic radius 0.095 0.133		(11
Ions Na ⁺ K ⁺ Mg ²⁺ ain why ic	Electronic arrangement 2.8 2.8.8 2.8 pnic radius of:	Ionic radius 0.095 0.133		(11
Ions Na ⁺ K ⁺ Mg ²⁺ ain why ic	Electronic arrangement 2.8 2.8.8 2.8 poinc radius of: reater than that of Na ⁺	Ionic radius 0.095 0.133		(11
Ions Na ⁺ K ⁺ Mg ²⁺ ain why ic	Electronic arrangement 2.8 2.8.8 2.8 poinc radius of: reater than that of Na ⁺	Ionic radius 0.095 0.133		(11
Ions Na ⁺ K ⁺ Mg ²⁺ ain why ic	Electronic arrangement 2.8 2.8.8 2.8 poinc radius of: reater than that of Na ⁺	Ionic radius 0.095 0.133		(11
Ions Na ⁺ K ⁺ Mg ²⁺ ain why ic	Electronic arrangement 2.8 2.8.8 2.8 poinc radius of: reater than that of Na ⁺	Ionic radius 0.095 0.133		
Ions Na ⁺ K ⁺ Mg ²⁺ ain why ic	Electronic arrangement 2.8 2.8.8 2.8 poinc radius of: reater than that of Na ⁺	Ionic radius 0.095 0.133		(1r
Ions Na ⁺ K ⁺ Mg ²⁺ ain why ic	Electronic arrangement 2.8 2.8.8 2.8 poinc radius of: reater than that of Na ⁺	Ionic radius 0.095 0.133		(1)

Leekcsepast papers.C

26. In the industrial extraction of lead metal, the ore is first roasted in a furnace. The solid mixture obtained is then fed into another furnace together with coke, limestone and scrap iron. State the function of each of the following in this process.

Q0) ke				(1mk)
Sex Sea.				<u> </u>	
b. Lir	mestone				(1mk)
····					
c. Sci	rap iron				(1mk)
	* 1				53
••••					
27. (a) Sta	ate Le-Chateliar's principle.				(1mk)

(b) Under	certain conditions, carbon (lin the equation below.				
2CO ₂ +	4H ₂ O	3O ₂ H= +1452kJ	/mol		
What wou	uld be the effect on yield of r	methanol if the ter	mperature of the r	eaction mixtu	ire is
decreased	d? Explain.				(2mks)

28. Some average bond energies are given below.

Bond	Energy(kJ/mol)
C-C	348
С-Н	o ² 414
CI-CI	243
C-Cl Q	432
H-Cl CS	340

Calculate the energy change for the reaction below:

C ₂ H _{6 (g)}	+	Cl _{2 (g)}	CH ₃ CH ₂ Cl _(g)	+	HCl (g)	(3m	ıks)

29. Study the flow chart below showing the reaction involved in the preparation of sulphuric acid and answer the questions that follow.

(a) Name the reagents.

L......(1/2mk) M......(1/2)

(b) Write the equation for the reaction between reagent M and $H_2S_2O_7$ (1mk)